IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i4p432-d503590.html
   My bibliography  Save this article

On the Multistage Differential Transformation Method for Analyzing Damping Duffing Oscillator and Its Applications to Plasma Physics

Author

Listed:
  • Noufe H. Aljahdaly

    (Department of Mathematics, Faculty of Sciences and Arts-Rabigh Campus, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    These authors contributed equally to this work.)

  • S. A. El-Tantawy

    (Center for Physics Research (CPR), Department of Physics, Faculty of Science and Arts, Al-Mikhwah, Al-Baha University, Al-Baha 65431, Saudi Arabia
    Department of Physics, Faculty of Science, Port Said University, Port Said 42521, Egypt
    These authors contributed equally to this work.)

Abstract

The multistage differential transformation method (MSDTM) is used to find an approximate solution to the forced damping Duffing equation (FDDE). In this paper, we prove that the MSDTM can predict the solution in the long domain as compared to differential transformation method (DTM) and more accurately than the modified differential transformation method (MDTM). In addition, the maximum residual errors for DTM and its modification methods (MSDTM and MDTM) are estimated. As a real application to the obtained solution, we investigate the oscillations in a complex unmagnetized plasma. To do that, the fluid govern equations of plasma species is reduced to the modified Korteweg–de Vries–Burgers (mKdVB) equation. After that, by using a suitable transformation, the mKdVB equation is transformed into the forced damping Duffing equation.

Suggested Citation

  • Noufe H. Aljahdaly & S. A. El-Tantawy, 2021. "On the Multistage Differential Transformation Method for Analyzing Damping Duffing Oscillator and Its Applications to Plasma Physics," Mathematics, MDPI, vol. 9(4), pages 1-12, February.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:432-:d:503590
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/4/432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/4/432/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alvaro H. Salas & S. A. El-Tantawy & Noufe H. Aljahdaly, 2021. "An Exact Solution to the Quadratic Damping Strong Nonlinearity Duffing Oscillator," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-8, January.
    2. El-Tantawy, S.A., 2016. "Nonlinear dynamics of soliton collisions in electronegative plasmas: The phase shifts of the planar KdV- and mkdV-soliton collisions," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 162-168.
    3. Younghae Do & Bongsoo Jang, 2012. "Enhanced Multistage Differential Transform Method: Application to the Population Models," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Jin & Han, Xiujing, 2024. "Effects of modulation phase on relaxation oscillations in the Duffing system," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Weaam Alhejaili & Alvaro H. Salas & Samir A. El-Tantawy, 2022. "Novel Approximations to the (Un)forced Pendulum–Cart System: Ansatz and KBM Methods," Mathematics, MDPI, vol. 10(16), pages 1-12, August.
    3. Ali, Irfan & Masood, W. & Rizvi, H. & Alrowaily, Albandari W. & Ismaeel, Sherif M.E. & El-Tantawy, S.A., 2023. "Archipelagos, islands, necklaces, and other exotic structures in external force-driven chaotic dusty plasmas," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wedad Albalawi & Rasool Shah & Nehad Ali Shah & Jae Dong Chung & Sherif M. E. Ismaeel & Samir A. El-Tantawy, 2023. "Analyzing Both Fractional Porous Media and Heat Transfer Equations via Some Novel Techniques," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    2. El-Tantawy, S.A. & Salas, Alvaro H. & Alyousef, Haifa A. & Alharthi, M.R., 2022. "Novel approximations to a nonplanar nonlinear Schrödinger equation and modeling nonplanar rogue waves/breathers in a complex plasma," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    3. Ali, Irfan & Masood, W. & Rizvi, H. & Alrowaily, Albandari W. & Ismaeel, Sherif M.E. & El-Tantawy, S.A., 2023. "Archipelagos, islands, necklaces, and other exotic structures in external force-driven chaotic dusty plasmas," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. El-Tantawy, S.A. & Salas, Alvaro H. & Alharthi, M.R., 2021. "Novel analytical cnoidal and solitary wave solutions of the Extended Kawahara equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    5. Yang, Yingjuan & Qi, Guoyuan, 2018. "Mechanical analysis and bound of plasma chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 187-195.
    6. Çayan, Seda & Özhan, B. Burak & Sezer, Mehmet, 2022. "A Taylor-Splitting Collocation approach and applications to linear and nonlinear engineering models," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:432-:d:503590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.