IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i3p290-d491140.html
   My bibliography  Save this article

Discrete Group Actions on Digital Objects and Fixed Point Sets by Iso k (·)-Actions

Author

Listed:
  • Sang-Eon Han

    (Department of Mathematics Education, Institute of Pure and Applied Mathematics, Jeonbuk National University, Jeonju 54896, Jeonbuk, Korea)

Abstract

Given a digital image (or digital object) ( X , k ) , X ⊂ Z n , this paper initially establishes a group structure of the set of self- k -isomorphisms of ( X , k ) with the function composition, denoted by I s o k ( X ) or A u t k ( X ) . In particular, let C k n , l be a simple closed k -curve with l elements in Z n . Then, the group I s o k ( C k n , l ) is proved to be isomorphic to the standard dihedral group D l with order l . The calculation of this quantity I s o k ( C k n , l ) is a key step for obtaining many new results. Indeed, it is essential for exploring many features of I s o k ( X ) . Furthermore, this quantity is proved to be a digital topological invariant. After proceeding with an I s o k ( X ) -action on ( X , k ) , we investigate some properties of fixed point sets by this action. Finally, we explore various features of fixed point sets by this action from the viewpoint of digital k -curve theory. This paper only deals with k -connected digital images ( X , k ) whose cardinality is equal to or greater than 2. Besides, we discuss some errors that have appeared in the lilterature.

Suggested Citation

  • Sang-Eon Han, 2021. "Discrete Group Actions on Digital Objects and Fixed Point Sets by Iso k (·)-Actions," Mathematics, MDPI, vol. 9(3), pages 1-25, February.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:3:p:290-:d:491140
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/3/290/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/3/290/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sang-Eon Han, 2020. "Fixed Point Sets of Digital Curves and Digital Surfaces," Mathematics, MDPI, vol. 8(11), pages 1-25, October.
    2. Sang-Eon Han, 2020. "The Most Refined Axiom for a Digital Covering Space and Its Utilities," Mathematics, MDPI, vol. 8(11), pages 1-21, October.
    3. Sang-Eon Han, 2019. "Remarks on the Preservation of the Almost Fixed Point Property Involving Several Types of Digitizations," Mathematics, MDPI, vol. 7(10), pages 1-14, October.
    4. Han, Sang-Eon, 2019. "Estimation of the complexity of a digital image from the viewpoint of fixed point theory," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 236-248.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sang-Eon Han & Saeid Jafari & Jeong Min Kang, 2019. "Topologies on Z n that Are Not Homeomorphic to the n -Dimensional Khalimsky Topological Space," Mathematics, MDPI, vol. 7(11), pages 1-12, November.
    2. Sang-Eon Han, 2019. "Fixed Point Theory for Digital k -Surfaces and Some Remarks on the Euler Characteristics of Digital Closed Surfaces," Mathematics, MDPI, vol. 7(12), pages 1-19, December.
    3. Yu Song & Chenfei Qian & Susan Pickard, 2021. "Age-Related Digital Divide during the COVID-19 Pandemic in China," IJERPH, MDPI, vol. 18(21), pages 1-13, October.
    4. Sang-Eon Han, 2020. "Digital Topological Properties of an Alignment of Fixed Point Sets," Mathematics, MDPI, vol. 8(6), pages 1-18, June.
    5. Sang-Eon Han, 2020. "Digital k -Contractibility of an n -Times Iterated Connected Sum of Simple Closed k -Surfaces and Almost Fixed Point Property," Mathematics, MDPI, vol. 8(3), pages 1-23, March.
    6. Sang-Eon Han, 2019. "Remarks on the Preservation of the Almost Fixed Point Property Involving Several Types of Digitizations," Mathematics, MDPI, vol. 7(10), pages 1-14, October.
    7. Sang-Eon Han, 2020. "Fixed Point Sets of k -Continuous Self-Maps of m -Iterated Digital Wedges," Mathematics, MDPI, vol. 8(9), pages 1-26, September.
    8. Sang-Eon Han, 2020. "Fixed Point Sets of Digital Curves and Digital Surfaces," Mathematics, MDPI, vol. 8(11), pages 1-25, October.
    9. Sang-Eon Han, 2020. "The Most Refined Axiom for a Digital Covering Space and Its Utilities," Mathematics, MDPI, vol. 8(11), pages 1-21, October.
    10. Sang-Eon Han, 2019. "Links between Contractibility and Fixed Point Property for Khalimsky Topological Spaces," Mathematics, MDPI, vol. 8(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:3:p:290-:d:491140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.