IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i2p188-d482845.html
   My bibliography  Save this article

Modeling Recoveries of US Leading Banks Based on Publicly Disclosed Data

Author

Listed:
  • Pawel Siarka

    (Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland)

Abstract

The credit risk management process is a critical element that allows financial institutions to withstand economic downturns. Unlike the methods regarding the probability of default, which have been deeply addressed after the financial crisis in 2008, recovery rate models still need further development. As there are no industry standards, leading banks are modeling recovery rates using internal models developed with different assumptions. Therefore, the outcomes are often incomparable and may lead to confusion. The author presents the concept of a unified recovery rate analysis for US banks. He uses data derived from FR Y-9C reports disclosed by the Federal Reserve Bank of Chicago. Based on the historical recoveries and credit portfolio book values, the author examines the distribution function of recoveries. The research refers to a credit card portfolio and covers nine leading US banks. The author leveraged Vasicek’s one-factor model with the asset correlation parameter and implemented it for recovery rate analysis. This experiment revealed that the estimated latent correlation ranges from 0.2% to 1.5% within the examined portfolios. They are large enough to impact the recovery rate volatility and cannot be treated as negligible. It was shown that the presented method could be applied under US Comprehensive Capital Analysis and Review exercise.

Suggested Citation

  • Pawel Siarka, 2021. "Modeling Recoveries of US Leading Banks Based on Publicly Disclosed Data," Mathematics, MDPI, vol. 9(2), pages 1-14, January.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:2:p:188-:d:482845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/2/188/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/2/188/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    2. Unal, Haluk & Madan, Dilip & Guntay, Levent, 2003. "Pricing the risk of recovery in default with absolute priority rule violation," Journal of Banking & Finance, Elsevier, vol. 27(6), pages 1001-1025, June.
    3. Düllmann, Klaus & Trapp, Monika, 2004. "Systematic Risk in Recovery Rates: An Empirical Analysis of US Corporate Credit Exposures," Discussion Paper Series 2: Banking and Financial Studies 2004,02, Deutsche Bundesbank.
    4. Rudi Schafer & Alexander F. R. Koivusalo, 2011. "Dependence of defaults and recoveries in structural credit risk models," Papers 1102.3150, arXiv.org, revised Mar 2011.
    5. repec:bla:jfinan:v:53:y:1998:i:4:p:1363-1387 is not listed on IDEAS
    6. Rongda Chen & Ze Wang, 2013. "Curve Fitting of the Corporate Recovery Rates: The Comparison of Beta Distribution Estimation and Kernel Density Estimation," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    2. Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
    3. Thamayanthi Chellathurai, 2017. "Probability Density Of Recovery Rate Given Default Of A Firm’S Debt And Its Constituent Tranches," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    4. Klaus Duellmann & Jonathan Küll & Michael Kunisch, 2010. "Estimating asset correlations from stock prices or default rates - which method is superior?," Post-Print hal-00736734, HAL.
    5. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    6. Barbagli, Matteo & Vrins, Frédéric, 2023. "Accounting for PD-LGD dependency: A tractable extension to the Basel ASRF framework," Economic Modelling, Elsevier, vol. 125(C).
    7. Düllmann, Klaus & Kunisch, Michael & Küll, Jonathan, 2008. "Estimating asset correlations from stock prices or default rates: which method is superior?," Discussion Paper Series 2: Banking and Financial Studies 2008,04, Deutsche Bundesbank.
    8. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, December.
    9. Bhanot, Karan & Larsson, Carl F., 2018. "Uncovering the impact of regulatory uncertainty on credit spreads: A study of the U.S. covered bond experience," Journal of Financial Markets, Elsevier, vol. 39(C), pages 84-110.
    10. Gürtler, Marc & Heithecker, Dirk, 2004. "Modellkonsistente Bestimmung des LGD im IRB-Ansatz von Basel II," Working Papers FW08V3, Technische Universität Braunschweig, Institute of Finance.
    11. Alexander Becker & Alexander F. R. Koivusalo & Rudi Schafer, 2012. "Empirical Evidence for the Structural Recovery Model," Papers 1203.3188, arXiv.org.
    12. Castellano, Rosella & Corallo, Vincenzo & Morelli, Giacomo, 2022. "Structural estimation of counterparty credit risk under recovery risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    13. Tian‐Shyr Dai & Chen‐Chiang Fan & Liang‐Chih Liu & Chuan‐Ju Wang & Jr‐Yan Wang, 2022. "A stochastic‐volatility equity‐price tree for pricing convertible bonds with endogenous firm values and default risks determined by the first‐passage default model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2103-2134, December.
    14. Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2017. "Is it obligor or instrument that explains recovery rate: Evidence from US corporate bond," Journal of Financial Stability, Elsevier, vol. 28(C), pages 1-15.
    15. Pyo, Unyong & Thompson, Howard E., 2007. "Bond prices in a debt priority structure with absolute priority rule deviation," The Quarterly Review of Economics and Finance, Elsevier, vol. 47(1), pages 113-134, March.
    16. António Santos, 2020. "The relation between PD and LGD: an application to a corporate loan portfolio," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    17. González, Marta Ramos & Ureña, Antonio Partal & Fernández-Aguado, Pilar Gómez, 2018. "Proposal on ELBE and LGD in-default: tackling capital requirements after the financial crisis," Working Paper Series 2165, European Central Bank.
    18. António Santos, . "The relation between PD and LGD: an application to a corporate loan portfolio," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    19. Schläfer, Timo & Uhrig-Homburg, Marliese, 2014. "Is recovery risk priced?," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 257-270.
    20. Pascal François, 2019. "The Determinants of Market-Implied Recovery Rates," Risks, MDPI, vol. 7(2), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:2:p:188-:d:482845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.