IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/20182165.html
   My bibliography  Save this paper

Proposal on ELBE and LGD in-default: tackling capital requirements after the financial crisis

Author

Listed:
  • González, Marta Ramos
  • Ureña, Antonio Partal
  • Fernández-Aguado, Pilar Gómez

Abstract

Following the financial crisis, the share of non-performing loans has significantly increased, while the regulatory guidelines on the Internal-Ratings Based (IRB) approach for capital adequacy calculation related to defaulted exposures remains too general. As a result, the high-risk nature of these portfolios is clearly in danger of being managed in a heterogeneous and inappropriate manner by those financial institutions permitted to use the IRB system, with the consequent undue variability of Risk-Weighted Assets (RWA). This paper presents a proposal to construct Advanced IRB models for defaulted exposures, in line with current regulations, that preserve the risk sensitivity of capital requirements. To do so, both parameters Expected Loss Best Estimate (ELBE) and Loss Given Default (LGD) in-default are obtained, backed by an innovative indicator (Mixed Adjustment Indicator) that is introduced to ensure an appropriate estimation of expected and unexpected losses. The methodology presented has low complexity and is easily applied to the databases commonly used at these institutions, as illustrated by two examples. JEL Classification: C51, G21, G28, G32

Suggested Citation

  • González, Marta Ramos & Ureña, Antonio Partal & Fernández-Aguado, Pilar Gómez, 2018. "Proposal on ELBE and LGD in-default: tackling capital requirements after the financial crisis," Working Paper Series 2165, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:20182165
    Note: 3037891
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecb.wp2165.en.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fenech, Jean Pierre & Yap, Ying Kai & Shafik, Salwa, 2016. "Modelling the recovery outcomes for defaulted loans: A survival analysis approach," Economics Letters, Elsevier, vol. 145(C), pages 79-82.
    2. repec:bla:ecnote:v:33:y:2004:i:2:p:183-208 is not listed on IDEAS
    3. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    4. Gürtler, Marc & Hibbeln, Martin, 2013. "Improvements in loss given default forecasts for bank loans," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2354-2366.
    5. Betz, Jennifer & Kellner, Ralf & Rösch, Daniel, 2016. "What drives the time to resolution of defaulted bank loans?," Finance Research Letters, Elsevier, vol. 18(C), pages 7-31.
    6. Düllmann, Klaus & Trapp, Monika, 2004. "Systematic Risk in Recovery Rates: An Empirical Analysis of US Corporate Credit Exposures," Discussion Paper Series 2: Banking and Financial Studies 2004,02, Deutsche Bundesbank.
    7. Altman, Edward I. & Suggitt, Heather J., 2000. "Default rates in the syndicated bank loan market: A mortality analysis," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 229-253, January.
    8. Altman, Edward I. & Kalotay, Egon A., 2014. "Ultimate recovery mixtures," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 116-129.
    9. Dermine, J. & Neto de Carvalho, C., 2008. "Bank loan-loss provisioning, central bank rules vs. estimation: The case of Portugal," Journal of Financial Stability, Elsevier, vol. 4(1), pages 1-22, April.
    10. repec:bla:jfinan:v:44:y:1989:i:4:p:909-22 is not listed on IDEAS
    11. Jon Frye, 2000. "Depressing recoveries," Emerging Issues, Federal Reserve Bank of Chicago, issue Oct.
    12. Zhang, Jie & Thomas, Lyn C., 2012. "Comparisons of linear regression and survival analysis using single and mixture distributions approaches in modelling LGD," International Journal of Forecasting, Elsevier, vol. 28(1), pages 204-215.
    13. Dermine, J. & de Carvalho, C. Neto, 2006. "Bank loan losses-given-default: A case study," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1219-1243, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Ramos González & Antonio Partal Ureña & Pilar Gómez Fernández-Aguado, 2021. "Regulatory Estimates for Defaulted Exposures: A Case Study of Spanish Mortgages," Mathematics, MDPI, vol. 9(9), pages 1-9, April.
    2. Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2017. "Is it obligor or instrument that explains recovery rate: Evidence from US corporate bond," Journal of Financial Stability, Elsevier, vol. 28(C), pages 1-15.
    3. Jennifer Betz & Ralf Kellner & Daniel Rösch, 2021. "Time matters: How default resolution times impact final loss rates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 619-644, June.
    4. Thamayanthi Chellathurai, 2017. "Probability Density Of Recovery Rate Given Default Of A Firm’S Debt And Its Constituent Tranches," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    5. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    6. Hurlin, Christophe & Leymarie, Jérémy & Patin, Antoine, 2018. "Loss functions for Loss Given Default model comparison," European Journal of Operational Research, Elsevier, vol. 268(1), pages 348-360.
    7. Betz, Jennifer & Kellner, Ralf & Rösch, Daniel, 2018. "Systematic Effects among Loss Given Defaults and their Implications on Downturn Estimation," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1113-1144.
    8. Frank Ranganai Matenda & Mabutho Sibanda & Eriyoti Chikodza & Victor Gumbo, 2022. "Corporate Loan Recovery Rates under Downturn Conditions in a Developing Economy: Evidence from Zimbabwe," Risks, MDPI, vol. 10(10), pages 1-24, October.
    9. Kaposty, Florian & Kriebel, Johannes & Löderbusch, Matthias, 2020. "Predicting loss given default in leasing: A closer look at models and variable selection," International Journal of Forecasting, Elsevier, vol. 36(2), pages 248-266.
    10. Yuta Tanoue & Satoshi Yamashita & Hideaki Nagahata, 2020. "Comparison study of two-step LGD estimation model with probability machines," Risk Management, Palgrave Macmillan, vol. 22(3), pages 155-177, September.
    11. Christophe Hurlin & Jérémy Leymarie & Antoine Patin, 2018. "Loss functions for LGD model comparison," Working Papers halshs-01516147, HAL.
    12. Gürtler, Marc & Heithecker, Dirk, 2004. "Modellkonsistente Bestimmung des LGD im IRB-Ansatz von Basel II," Working Papers FW08V3, Technische Universität Braunschweig, Institute of Finance.
    13. Krüger, Steffen & Rösch, Daniel, 2017. "Downturn LGD modeling using quantile regression," Journal of Banking & Finance, Elsevier, vol. 79(C), pages 42-56.
    14. Nazemi, Abdolreza & Fatemi Pour, Farnoosh & Heidenreich, Konstantin & Fabozzi, Frank J., 2017. "Fuzzy decision fusion approach for loss-given-default modeling," European Journal of Operational Research, Elsevier, vol. 262(2), pages 780-791.
    15. Peter-Hendrik Ingermann & Frederik Hesse & Christian Bélorgey & Andreas Pfingsten, 2016. "The recovery rate for retail and commercial customers in Germany: a look at collateral and its adjusted market values," Business Research, Springer;German Academic Association for Business Research, vol. 9(2), pages 179-228, August.
    16. Mili, Medhi & Sahut, Jean-Michel & Teulon, Frédéric, 2018. "Modeling recovery rates of corporate defaulted bonds in developed and developing countries," Emerging Markets Review, Elsevier, vol. 36(C), pages 28-44.
    17. Konstantin Belyaev & Aelita Belyaeva & Tomas Konecny & Jakub Seidler & Martin Vojtek, 2012. "Macroeconomic Factors as Drivers of LGD Prediction: Empirical Evidence from the Czech Republic," Working Papers 2012/12, Czech National Bank.
    18. Dermine, J. & Neto de Carvalho, C., 2008. "Bank loan-loss provisioning, central bank rules vs. estimation: The case of Portugal," Journal of Financial Stability, Elsevier, vol. 4(1), pages 1-22, April.
    19. Pascal François, 2019. "The Determinants of Market-Implied Recovery Rates," Risks, MDPI, vol. 7(2), pages 1-15, May.
    20. Cheng, Dan & Cirillo, Pasquale, 2018. "A reinforced urn process modeling of recovery rates and recovery times," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 1-17.

    More about this item

    Keywords

    banking regulation; credit risk; defaulted exposures;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20182165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.