IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i24p3192-d699850.html
   My bibliography  Save this article

Cluster Analysis of Financial Strategies of Companies

Author

Listed:
  • Sergey Dzuba

    (FEFU Campus, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia)

  • Denis Krylov

    (FEFU Campus, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia)

Abstract

Measuring the value of companies and assessing their risk often relies on econometric methods that consider companies as a set of objects under study, homogeneous in the sense of their use of financial strategies. This paper shows that cluster analysis methods can divide companies into classes according to financial strategies that they employ. This indicates that homogeneity can be considered within these classes, while between-class companies should rather be perceived as heterogeneous. The clustering of companies has to be performed on quite a dense set of strategies, which requires a combination of formal and heuristic methods. To divide companies into classes, we used financial coefficients characterizing strategies for the 2030 largest non-financial companies within the time period from 2006 to 2018. As a result, a stable division into seven clusters/strategies was obtained. We revealed that some strategies were more characteristic for the companies of high-tech economy, while others were typical for the companies in basic industries. The dynamics of clusters is characterized by an increase in the share of risky strategies. A good meaningful interpretation of the resulting clustering confirms its consistency. The identified clusters can be used as dummy variables in econometric studies of companies to improve the quality of the results.

Suggested Citation

  • Sergey Dzuba & Denis Krylov, 2021. "Cluster Analysis of Financial Strategies of Companies," Mathematics, MDPI, vol. 9(24), pages 1-21, December.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3192-:d:699850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/24/3192/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/24/3192/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramanna, Karthik, 2008. "The implications of unverifiable fair-value accounting: Evidence from the political economy of goodwill accounting," Journal of Accounting and Economics, Elsevier, vol. 45(2-3), pages 253-281, August.
    2. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    3. Capece, Guendalina & Cricelli, Livio & Di Pillo, Francesca & Levialdi, Nathan, 2010. "A cluster analysis study based on profitability and financial indicators in the Italian gas retail market," Energy Policy, Elsevier, vol. 38(7), pages 3394-3402, July.
    4. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    5. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    6. Tian, Shaonan & Yu, Yan, 2017. "Financial ratios and bankruptcy predictions: An international evidence," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 510-526.
    7. Bonaimé, Alice A. & Hankins, Kristine W. & Jordan, Bradford D., 2016. "The cost of financial flexibility: Evidence from share repurchases," Journal of Corporate Finance, Elsevier, vol. 38(C), pages 345-362.
    8. Ali Seyed Shirkhorshidi & Saeed Aghabozorgi & Teh Ying Wah, 2015. "A Comparison Study on Similarity and Dissimilarity Measures in Clustering Continuous Data," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin Kuang & Tse-Chen Chang & Chia-Wei Chu, 2022. "Research on Financial Early Warning Based on Combination Forecasting Model," Sustainability, MDPI, vol. 14(19), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    2. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    3. Abinzano, Isabel & Gonzalez-Urteaga, Ana & Muga, Luis & Sanchez, Santiago, 2020. "Performance of default-risk measures: the sample matters," Journal of Banking & Finance, Elsevier, vol. 120(C).
    4. Zhang, Xuan & Ouyang, Ruolan & Liu, Ding & Xu, Liao, 2020. "Determinants of corporate default risk in China: The role of financial constraints," Economic Modelling, Elsevier, vol. 92(C), pages 87-98.
    5. Adler Haymans Manurung & Derwin Suhartono & Benny Hutahayan & Noptovius Halimawan, 2023. "Probability Bankruptcy Using Support Vector Regression Machines," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 13(1), pages 1-3.
    6. Sebastian Klaudiusz Tomczak & Anna Skowrońska-Szmer & Jan Jakub Szczygielski, 2020. "Is Investing in Companies Manufacturing Solar Components a Lucrative Business? A Decision Tree Based Analysis," Energies, MDPI, vol. 13(2), pages 1-27, January.
    7. Zhichao Luo & Pingyu Hsu & Ni Xu, 2020. "SME Default Prediction Framework with the Effective Use of External Public Credit Data," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    8. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
    9. Stefania Vignini & Tiziana De Cristofaro, 2018. "Impatto della crisi economica su redditivit? e rischio finanziario delle imprese romagnole. Una cluster analysis," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2018(3), pages 157-181.
    10. Akarsh Kainth & Ranik Raaen Wahlstrøm, 2021. "Do IFRS Promote Transparency? Evidence from the Bankruptcy Prediction of Privately Held Swedish and Norwegian Companies," JRFM, MDPI, vol. 14(3), pages 1-15, March.
    11. Wei Xu & Yuchen Pan & Wenting Chen & Hongyong Fu, 2019. "Forecasting Corporate Failure in the Chinese Energy Sector: A Novel Integrated Model of Deep Learning and Support Vector Machine," Energies, MDPI, vol. 12(12), pages 1-20, June.
    12. Zhang, Xuan & Zhao, Yang & Yao, Xiao, 2022. "Forecasting corporate default risk in China," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1054-1070.
    13. Liang, Deron & Tsai, Chih-Fong & Lu, Hung-Yuan (Richard) & Chang, Li-Shin, 2020. "Combining corporate governance indicators with stacking ensembles for financial distress prediction," Journal of Business Research, Elsevier, vol. 120(C), pages 137-146.
    14. Jabeur, Sami Ben & Gharib, Cheima & Mefteh-Wali, Salma & Arfi, Wissal Ben, 2021. "CatBoost model and artificial intelligence techniques for corporate failure prediction," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    15. Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.
    16. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    17. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    18. Lauren Stagnol, 2015. "Designing a corporate bond index on solvency criteria," EconomiX Working Papers 2015-39, University of Paris Nanterre, EconomiX.
    19. Lin, Hsiou-Wei William & Lo, Huai-Chun & Wu, Ruei-Shian, 2016. "Modeling default prediction with earnings management," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 306-322.
    20. Wen Su, 2021. "Default Distances Based on the CEV-KMV Model," Papers 2107.10226, arXiv.org, revised May 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3192-:d:699850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.