IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i24p3183-d699066.html
   My bibliography  Save this article

Flexible Power-Normal Models with Applications

Author

Listed:
  • Guillermo Martínez-Flórez

    (Departamento de Matemáticas y Estadística, Facultad de Ciencias, Universidad de Córdoba, Córdoba 2300, Colombia)

  • Diego I. Gallardo

    (Departamento de Matemática, Facultad de Ingeniería, Universidad de Atacama, Copiapó 1530000, Chile)

  • Osvaldo Venegas

    (Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco 4780000, Chile)

  • Heleno Bolfarine

    (Departamento de Estatística, IME, Universidade de São Paulo, São Paulo 05508-090, Brazil)

  • Héctor W. Gómez

    (Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile)

Abstract

The main object of this paper is to propose a new asymmetric model more flexible than the generalized Gaussian model. The probability density function of the new model can assume bimodal or unimodal shapes, and one of the parameters controls the skewness of the model. Three simulation studies are reported and two real data applications illustrate the flexibility of the model compared with traditional proposals in the literature.

Suggested Citation

  • Guillermo Martínez-Flórez & Diego I. Gallardo & Osvaldo Venegas & Heleno Bolfarine & Héctor W. Gómez, 2021. "Flexible Power-Normal Models with Applications," Mathematics, MDPI, vol. 9(24), pages 1-15, December.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3183-:d:699066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/24/3183/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/24/3183/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rameshwar Gupta & Ramesh Gupta, 2008. "Analyzing skewed data by power normal model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 197-210, May.
    2. Yanyuan Ma & Marc G. Genton, 2004. "Flexible Class of Skew‐Symmetric Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(3), pages 459-468, September.
    3. Altemir da Silva Braga & Gauss M. Cordeiro & Edwin M. M. Ortega, 2018. "A new skew-bimodal distribution with applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(12), pages 2950-2968, June.
    4. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    5. Arthur Pewsey & Héctor Gómez & Heleno Bolfarine, 2012. "Likelihood-based inference for power distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 775-789, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Tovar-Falón & Guillermo Martínez-Flórez & Heleno Bolfarine, 2022. "Modelling Asymmetric Data by Using the Log-Gamma-Normal Regression Model," Mathematics, MDPI, vol. 10(7), pages 1-16, April.
    2. Daan de Waal & Tristan Harris & Alta de Waal & Jocelyn Mazarura, 2022. "Modelling Bimodal Data Using a Multivariate Triangular-Linked Distribution," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
    3. Juan Duarte & Guillermo Martínez-Flórez & Diego Ignacio Gallardo & Osvaldo Venegas & Héctor W. Gómez, 2023. "A Bimodal Extension of the Epsilon-Skew-Normal Model," Mathematics, MDPI, vol. 11(3), pages 1-18, January.
    4. Isaac E. Cortés & Osvaldo Venegas & Héctor W. Gómez, 2022. "A Symmetric/Asymmetric Bimodal Extension Based on the Logistic Distribution: Properties, Simulation and Applications," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
    5. Ali Genç, 2013. "A skew extension of the slash distribution via beta-normal distribution," Statistical Papers, Springer, vol. 54(2), pages 427-442, May.
    6. Cornelis J. Potgieter & Marc G. Genton, 2013. "Characteristic Function-based Semiparametric Inference for Skew-symmetric Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 471-490, September.
    7. Samuel Kotz & Donatella Vicari, 2005. "Survey of developments in the theory of continuous skewed distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 225-261.
    8. Guillermo Martínez-Flórez & Roger Tovar-Falón & Heleno Bolfarine, 2023. "The Log-Bimodal Asymmetric Generalized Gaussian Model with Application to Positive Data," Mathematics, MDPI, vol. 11(16), pages 1-14, August.
    9. David Elal-Olivero & Juan F. Olivares-Pacheco & Osvaldo Venegas & Heleno Bolfarine & Héctor W. Gómez, 2020. "On Properties of the Bimodal Skew-Normal Distribution and an Application," Mathematics, MDPI, vol. 8(5), pages 1-16, May.
    10. R. N. Rattihalli, 2023. "A Class of Multivariate Power Skew Symmetric Distributions: Properties and Inference for the Power-Parameter," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1356-1393, August.
    11. Hok Shing Kwong & Saralees Nadarajah, 2022. "A New Robust Class of Skew Elliptical Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1669-1691, September.
    12. Ley, Christophe & Paindaveine, Davy, 2010. "On the singularity of multivariate skew-symmetric models," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1434-1444, July.
    13. Guillermo Martínez-Flórez & Heleno Bolfarine & Héctor Gómez, 2015. "Doubly censored power-normal regression models with inflation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 265-286, June.
    14. Emilio Gómez-Déniz & Barry C. Arnold & José M. Sarabia & Héctor W. Gómez, 2021. "Properties and Applications of a New Family of Skew Distributions," Mathematics, MDPI, vol. 9(1), pages 1-18, January.
    15. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    16. J. Rosco & M. Jones & Arthur Pewsey, 2011. "Skew t distributions via the sinh-arcsinh transformation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 630-652, November.
    17. Adelchi Azzalini & Giuliana Regoli, 2012. "Some properties of skew-symmetric distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 857-879, August.
    18. Abbas Mahdavi & Vahid Amirzadeh & Ahad Jamalizadeh & Tsung-I Lin, 2021. "Maximum likelihood estimation for scale-shape mixtures of flexible generalized skew normal distributions via selection representation," Computational Statistics, Springer, vol. 36(3), pages 2201-2230, September.
    19. Seokho Lee & Marc G. Genton & Reinaldo B. Arellano-Valle, 2010. "Perturbation of Numerical Confidential Data via Skew-t Distributions," Management Science, INFORMS, vol. 56(2), pages 318-333, February.
    20. Guillermo Martínez-Flórez & Hector W. Gomez & Roger Tovar-Falón, 2021. "Modeling Proportion Data with Inflation by Using a Power-Skew-Normal/Logit Mixture Model," Mathematics, MDPI, vol. 9(16), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3183-:d:699066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.