IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i23p3127-d695028.html
   My bibliography  Save this article

Mixture of Species Sampling Models

Author

Listed:
  • Federico Bassetti

    (Department of Mathematics, Politecnico of Milano, 20133 Milano, Italy
    These authors contributed equally to this work.)

  • Lucia Ladelli

    (Department of Mathematics, Politecnico of Milano, 20133 Milano, Italy
    These authors contributed equally to this work.)

Abstract

We introduce mixtures of species sampling sequences (mSSS) and discuss how these sequences are related to various types of Bayesian models. As a particular case, we recover species sampling sequences with general (not necessarily diffuse) base measures. These models include some “spike-and-slab” non-parametric priors recently introduced to provide sparsity. Furthermore, we show how mSSS arise while considering hierarchical species sampling random probabilities (e.g., the hierarchical Dirichlet process). Extending previous results, we prove that mSSS are obtained by assigning the values of an exchangeable sequence to the classes of a latent exchangeable random partition. Using this representation, we give an explicit expression of the Exchangeable Partition Probability Function of the partition generated by an mSSS. Some special cases are discussed in detail—in particular, species sampling sequences with general base measures and a mixture of species sampling sequences with Gibbs-type latent partition. Finally, we give explicit expressions of the predictive distributions of an mSSS.

Suggested Citation

  • Federico Bassetti & Lucia Ladelli, 2021. "Mixture of Species Sampling Models," Mathematics, MDPI, vol. 9(23), pages 1-27, December.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3127-:d:695028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/23/3127/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/23/3127/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lancelot F. James & Antonio Lijoi & Igor Prünster, 2009. "Posterior Analysis for Normalized Random Measures with Independent Increments," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 76-97, March.
    2. Bassetti, Federico & Ladelli, Lucia, 2020. "Asymptotic number of clusters for species sampling sequences with non-diffuse base measure," Statistics & Probability Letters, Elsevier, vol. 162(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Amiryousefi & Ville Kinnula & Jing Tang, 2022. "Bayes in Wonderland! Predictive Supervised Classification Inference Hits Unpredictability," Mathematics, MDPI, vol. 10(5), pages 1-11, March.
    2. Emanuele Dolera, 2022. "Preface to the Special Issue on “Bayesian Predictive Inference and Related Asymptotics—Festschrift for Eugenio Regazzini’s 75th Birthday”," Mathematics, MDPI, vol. 10(15), pages 1-4, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Canale, Antonio & Lijoi, Antonio & Nipoti, Bernardo & Prünster, Igor, 2023. "Inner spike and slab Bayesian nonparametric models," Econometrics and Statistics, Elsevier, vol. 27(C), pages 120-135.
    2. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    3. Antonio Lijoi & Igor Pruenster, 2009. "Models beyond the Dirichlet process," ICER Working Papers - Applied Mathematics Series 23-2009, ICER - International Centre for Economic Research.
    4. Riva Palacio, Alan & Leisen, Fabrizio, 2018. "Integrability conditions for compound random measures," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 32-37.
    5. Antonio Lijoi & Igor Pruenster, 2009. "Distributional Properties of means of Random Probability Measures," ICER Working Papers - Applied Mathematics Series 22-2009, ICER - International Centre for Economic Research.
    6. Griffin, Jim, 2019. "Two part envelopes for rejection sampling of some completely random measures," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 36-41.
    7. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
    8. Nieto-Barajas, Luis E., 2014. "Bayesian semiparametric analysis of short- and long-term hazard ratios with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 477-490.
    9. Antonio Lijoi & Igor Prunster, 2009. "Models beyond the Dirichlet process," Quaderni di Dipartimento 103, University of Pavia, Department of Economics and Quantitative Methods.
    10. Matthew D. Koslovsky, 2023. "A Bayesian zero‐inflated Dirichlet‐multinomial regression model for multivariate compositional count data," Biometrics, The International Biometric Society, vol. 79(4), pages 3239-3251, December.
    11. François Caron & Emily B. Fox, 2017. "Sparse graphs using exchangeable random measures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1295-1366, November.
    12. Argiento, Raffaele & Guglielmi, Alessandra & Pievatolo, Antonio, 2010. "Bayesian density estimation and model selection using nonparametric hierarchical mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 816-832, April.
    13. J. E. Griffin & M. Kolossiatis & M. F. J. Steel, 2013. "Comparing distributions by using dependent normalized random-measure mixtures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 499-529, June.
    14. Lancelot F. James, 2022. "Single-Block Recursive Poisson–Dirichlet Fragmentations of Normalized Generalized Gamma Processes," Mathematics, MDPI, vol. 10(4), pages 1-10, February.
    15. Antonio Lijoi & Bernardo Nipoti & Igor Prünster, 2013. "Dependent mixture models: clustering and borrowing information," DEM Working Papers Series 046, University of Pavia, Department of Economics and Management.
    16. Luai Al Labadi & Ibrahim Abdelrazeq, 2017. "On functional central limit theorems of Bayesian nonparametric priors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(2), pages 215-229, June.
    17. Collet, Francesca & Leisen, Fabrizio, 2011. "Free completely random measures," DES - Working Papers. Statistics and Econometrics. WS ws112821, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Lijoi, Antonio & Nipoti, Bernardo & Prünster, Igor, 2014. "Dependent mixture models: Clustering and borrowing information," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 417-433.
    19. Ali Amiryousefi & Ville Kinnula & Jing Tang, 2022. "Bayes in Wonderland! Predictive Supervised Classification Inference Hits Unpredictability," Mathematics, MDPI, vol. 10(5), pages 1-11, March.
    20. Pierpaolo De Blasi & Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster & Mattteo Ruggiero, 2013. "Are Gibbs-type priors the most natural generalization of the Dirichlet process?," DEM Working Papers Series 054, University of Pavia, Department of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3127-:d:695028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.