IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i23p3089-d691802.html
   My bibliography  Save this article

Neural Network Modelling for Prediction of Zeta Potential

Author

Listed:
  • Roman Marsalek

    (Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, 701 03 Ostrava, Czech Republic)

  • Martin Kotyrba

    (Department of Informatics and Computers, Faculty of Science, University of Ostrava, 30. Dubna 22, 701 03 Ostrava, Czech Republic)

  • Eva Volna

    (Department of Informatics and Computers, Faculty of Science, University of Ostrava, 30. Dubna 22, 701 03 Ostrava, Czech Republic)

  • Robert Jarusek

    (Department of Informatics and Computers, Faculty of Science, University of Ostrava, 30. Dubna 22, 701 03 Ostrava, Czech Republic)

Abstract

The study is focused on monitoring the influence of selected parameters on the zeta potential values of titanium dioxide nanoparticles. The influence of pH, temperature, ionic strength, and mass content of titanium dioxide in the suspension was assessed. More than a thousand samples were measured by combining these variables. On the basis of results, the model of artificial neural network was proposed and tested. The authors have rich experiences with neural networks applications and this case shows that the neural network model works with a very high prediction success rate of zeta potential. Clearly, pH has the greatest effect on zeta potential values. The influence of other variables is not so significant. However, it can be said that increasing temperature results in an increase in the value of the zeta potential of titanium dioxide nanoparticles. The ionic force affects the zeta potential depending on the pH; in the vicinity of the isoelectric point, its effect is negligible. The effect of the mass content of titanium dioxide in the suspension is absolutely minor.

Suggested Citation

  • Roman Marsalek & Martin Kotyrba & Eva Volna & Robert Jarusek, 2021. "Neural Network Modelling for Prediction of Zeta Potential," Mathematics, MDPI, vol. 9(23), pages 1-12, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3089-:d:691802
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/23/3089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/23/3089/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Yu & Sulgani, Mohsen Tahmasebi & Ranjbarzadeh, Ramin & Karimipour, Arash & Nguyen, Truong Khang, 2019. "Hybrid GMDH-type neural network to predict fluid surface tension, shear stress, dynamic viscosity & sensitivity analysis based on empirical data of iron(II) oxide nanoparticles in light crude oil mixt," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhixiong & Shahrajabian, Hamzeh & Bagherzadeh, Seyed Amin & Jadidi, Hamid & Karimipour, Arash & Tlili, Iskander, 2020. "Effects of nano-clay content, foaming temperature and foaming time on density and cell size of PVC matrix foam by presented Least Absolute Shrinkage and Selection Operator statistical regression via s," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Wu, Huawei & Bagherzadeh, Seyed Amin & D’Orazio, Annunziata & Habibollahi, Navid & Karimipour, Arash & Goodarzi, Marjan & Bach, Quang-Vu, 2019. "Present a new multi objective optimization statistical Pareto frontier method composed of artificial neural network and multi objective genetic algorithm to improve the pipe flow hydrodynamic and ther," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    3. Mokshin, Anatolii V. & Khabibullin, Roman A., 2022. "Is there a one-to-one correspondence between interparticle interactions and physical properties of liquid?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3089-:d:691802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.