IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i21p2725-d666127.html
   My bibliography  Save this article

Feasible Optimal Solutions of Electromagnetic Cloaking Problems by Chaotic Accelerated Particle Swarm Optimization

Author

Listed:
  • Alkmini Michaloglou

    (School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
    These authors contributed equally to this work.)

  • Nikolaos L. Tsitsas

    (School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
    These authors contributed equally to this work.)

Abstract

The optimization problem of cloaking a perfectly electric conducting or dielectric spherical core is investigated. The primary excitation is due to an external magnetic dipole. The chaotic accelerated particle swarm optimization (CAPSO) algorithm is adjusted and applied to this optimization problem. The optimization variables are the radii, the permittivities and the permeabilities of a small number of spherical shells covering the core. Several feasible optimal designs are obtained, which exhibit perfect or almost perfect cloaking performance for all angles of observation. These optimal designs correspond to two, three or four spherical coating layers composed of ordinary materials. Detailed parametric investigations of the cloaking mechanism with respect to the type and radius of the core and the location of the primary dipole are carried out. The presented optimization procedure and the reported results are expected to be useful in applications like scattering and characterization of optical particles as well as in designing low-profile receiving antennas.

Suggested Citation

  • Alkmini Michaloglou & Nikolaos L. Tsitsas, 2021. "Feasible Optimal Solutions of Electromagnetic Cloaking Problems by Chaotic Accelerated Particle Swarm Optimization," Mathematics, MDPI, vol. 9(21), pages 1-23, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2725-:d:666127
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/21/2725/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/21/2725/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hossain, Md Alamgir & Pota, Hemanshu Roy & Squartini, Stefano & Abdou, Ahmed Fathi, 2019. "Modified PSO algorithm for real-time energy management in grid-connected microgrids," Renewable Energy, Elsevier, vol. 136(C), pages 746-757.
    2. Sotirios K. Goudos & Zaharias D. Zaharis & Konstantinos B. Baltzis, 2018. "Particle Swarm Optimization as Applied to Electromagnetic Design Problems," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 9(2), pages 47-82, April.
    3. Ajdad, H. & Filali Baba, Y. & Al Mers, A. & Merroun, O. & Bouatem, A. & Boutammachte, N., 2019. "Particle swarm optimization algorithm for optical-geometric optimization of linear fresnel solar concentrators," Renewable Energy, Elsevier, vol. 130(C), pages 992-1001.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji-Won Lee & Mun-Kyeom Kim & Hyung-Joon Kim, 2021. "A Multi-Agent Based Optimization Model for Microgrid Operation with Hybrid Method Using Game Theory Strategy," Energies, MDPI, vol. 14(3), pages 1-21, January.
    2. Brandon Cortés-Caicedo & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Miguel Angel Rodriguez-Cabal & Javier Alveiro Rosero, 2022. "Energy Management System for the Optimal Operation of PV Generators in Distribution Systems Using the Antlion Optimizer: A Colombian Urban and Rural Case Study," Sustainability, MDPI, vol. 14(23), pages 1-35, December.
    3. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).
    4. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    5. Cheng, Shen & Zhao, Gaiju & Gao, Ming & Shi, Yuetao & Huang, Mingming & Yousefi, Nasser, 2021. "Optimal hybrid energy system for locomotive utilizing improved Locust Swarm optimizer," Energy, Elsevier, vol. 218(C).
    6. Ghazouani, Mokhtar & Bouya, Mohsine & Benaissa, Mohammed, 2020. "Thermo-economic and exergy analysis and optimization of small PTC collectors for solar heat integration in industrial processes," Renewable Energy, Elsevier, vol. 152(C), pages 984-998.
    7. Wang, Zhuang & Chen, Li & Wang, Bin & Huang, Lianzhong & Wang, Kai & Ma, Ranqi, 2023. "Integrated optimization of speed schedule and energy management for a hybrid electric cruise ship considering environmental factors," Energy, Elsevier, vol. 282(C).
    8. S. M. Mahfuz Alam & Mohd. Hasan Ali, 2020. "Equation Based New Methods for Residential Load Forecasting," Energies, MDPI, vol. 13(23), pages 1-22, December.
    9. Hossain, Md Alamgir & Pota, Hemanshu Roy & Squartini, Stefano & Zaman, Forhad & Guerrero, Josep M., 2019. "Energy scheduling of community microgrid with battery cost using particle swarm optimisation," Applied Energy, Elsevier, vol. 254(C).
    10. Tayab, Usman Bashir & Lu, Junwei & Yang, Fuwen & AlGarni, Tahani Saad & Kashif, Muhammad, 2021. "Energy management system for microgrids using weighted salp swarm algorithm and hybrid forecasting approach," Renewable Energy, Elsevier, vol. 180(C), pages 467-481.
    11. Wen, Lei & Song, Qianqian, 2023. "ELCC-based capacity value estimation of combined wind - storage system using IPSO algorithm," Energy, Elsevier, vol. 263(PB).
    12. Mohammed Amine Hoummadi & Manale Bouderbala & Hala Alami Aroussi & Badre Bossoufi & Najib El Ouanjli & Mohammed Karim, 2023. "Survey of Sustainable Energy Sources for Microgrid Energy Management: A Review," Energies, MDPI, vol. 16(7), pages 1-16, March.
    13. Gülsah Erdogan & Wiem Fekih Hassen, 2023. "Charging Scheduling of Hybrid Energy Storage Systems for EV Charging Stations," Energies, MDPI, vol. 16(18), pages 1-29, September.
    14. Md Mamun Ur Rashid & Fabrizio Granelli & Md. Alamgir Hossain & Md. Shafiul Alam & Fahad Saleh Al-Ismail & Ashish Kumar Karmaker & Md. Mijanur Rahaman, 2020. "Development of Home Energy Management Scheme for a Smart Grid Community," Energies, MDPI, vol. 13(17), pages 1-24, August.
    15. Sánchez-González, Alberto & Gómez-Hernández, Jesús, 2020. "Beam-down linear Fresnel reflector: BDLFR," Renewable Energy, Elsevier, vol. 146(C), pages 802-815.
    16. Jahangir Hossain & Aida. F. A. Kadir & Ainain. N. Hanafi & Hussain Shareef & Tamer Khatib & Kyairul. A. Baharin & Mohamad. F. Sulaima, 2023. "A Review on Optimal Energy Management in Commercial Buildings," Energies, MDPI, vol. 16(4), pages 1-40, February.
    17. Nareshkumar, Kutikuppala & Das, Debapriya, 2024. "Optimal location and sizing of electric vehicles charging stations and renewable sources in a coupled transportation-power distribution network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    18. Zhang, Bin & Hu, Weihao & Xu, Xiao & Li, Tao & Zhang, Zhenyuan & Chen, Zhe, 2022. "Physical-model-free intelligent energy management for a grid-connected hybrid wind-microturbine-PV-EV energy system via deep reinforcement learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 433-448.
    19. Ma, Jun & Liu, Fang & Liu, Chao & Wang, Rong-Ji & Wang, Cheng-Long, 2024. "Optimal curvature radius of cylindrical mirrors in linear Fresnel reflectors," Renewable Energy, Elsevier, vol. 229(C).
    20. Yinghao Shan & Liqian Ma & Xiangkai Yu, 2023. "Hierarchical Control and Economic Optimization of Microgrids Considering the Randomness of Power Generation and Load Demand," Energies, MDPI, vol. 16(14), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2725-:d:666127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.