IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i19p2399-d644040.html
   My bibliography  Save this article

A Comparative Analysis of Some Methods for Wind Turbine Maximum Power Point Tracking

Author

Listed:
  • Constantin Voloşencu

    (Department of Automation and Applied Informatics, Faculty of Automation and Computers, Politehnica University Timişoara, 300223 Timişoara, Romania)

Abstract

The study in the paper is placed in the broad context of research for increasing the efficiency of capturing and converting wind energy. The purpose of the study is to analyze some mathematical methods for maximum power point tracking in wind turbines. The mathematical methods studied are on–off control, fuzzy control, and neural predictive control. The rules developed for maximum power point tracking are presented. The related control structures and their design methods are presented. The behaviors of the control systems and their energy efficiency are analyzed. Maximum power point tracking ensures a significant increase in the energy generated compared to the unfavorable case of operation at a small and constant load torque. The differences in energy efficiency between the methods of maximum power point tracking studied are small.

Suggested Citation

  • Constantin Voloşencu, 2021. "A Comparative Analysis of Some Methods for Wind Turbine Maximum Power Point Tracking," Mathematics, MDPI, vol. 9(19), pages 1-33, September.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2399-:d:644040
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/19/2399/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/19/2399/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hae Gwang Jeong & Ro Hak Seung & Kyo Beum Lee, 2012. "An Improved Maximum Power Point Tracking Method for Wind Power Systems," Energies, MDPI, vol. 5(5), pages 1-16, May.
    2. Abdullah, M.A. & Yatim, A.H.M. & Tan, C.W. & Saidur, R., 2012. "A review of maximum power point tracking algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3220-3227.
    3. Dongran Song & Jian Yang & Mei Su & Anfeng Liu & Yao Liu & Young Hoon Joo, 2017. "A Comparison Study between Two MPPT Control Methods for a Large Variable-Speed Wind Turbine under Different Wind Speed Characteristics," Energies, MDPI, vol. 10(5), pages 1-18, May.
    4. Constantin Volosencu, 2021. "Reducing Energy Consumption and Increasing the Performances of AC Motor Drives Using Fuzzy PI Speed Controllers," Energies, MDPI, vol. 14(8), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phan, Dinh-Chung & Yamamoto, Shigeru, 2016. "Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking," Energy, Elsevier, vol. 111(C), pages 377-388.
    2. Emejeamara, F.C. & Tomlin, A.S. & Millward-Hopkins, J.T., 2015. "Urban wind: Characterisation of useful gust and energy capture," Renewable Energy, Elsevier, vol. 81(C), pages 162-172.
    3. Dinh-Chung Phan & Shigeru Yamamoto, 2015. "Maximum Energy Output of a DFIG Wind Turbine Using an Improved MPPT-Curve Method," Energies, MDPI, vol. 8(10), pages 1-19, October.
    4. Njiri, Jackson G. & Söffker, Dirk, 2016. "State-of-the-art in wind turbine control: Trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 377-393.
    5. Pustina, L. & Biral, F. & Serafini, J., 2022. "A novel Economic Nonlinear Model Predictive Controller for power maximisation on wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    6. Tripathi, S.M. & Tiwari, A.N. & Singh, Deependra, 2015. "Grid-integrated permanent magnet synchronous generator based wind energy conversion systems: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1288-1305.
    7. Mérida, Jován & Aguilar, Luis T. & Dávila, Jorge, 2014. "Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization," Renewable Energy, Elsevier, vol. 71(C), pages 715-728.
    8. Ademi, Sul & Jovanovic, Milutin, 2016. "Control of doubly-fed reluctance generators for wind power applications," Renewable Energy, Elsevier, vol. 85(C), pages 171-180.
    9. Yin, Xiu-xing & Lin, Yong-gang & Li, Wei & Gu, Ya-jing & Liu, Hong-wei & Lei, Peng-fei, 2015. "A novel fuzzy integral sliding mode current control strategy for maximizing wind power extraction and eliminating voltage harmonics," Energy, Elsevier, vol. 85(C), pages 677-686.
    10. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    11. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Wimhurst, Joshua J. & Greene, J. Scott, 2019. "Oklahoma's future wind energy resources and their relationship with the Central Plains low-level jet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    14. Mojtaba Nasiri & Saleh Mobayen & Quan Min Zhu, 2019. "Super-Twisting Sliding Mode Control for Gearless PMSG-Based Wind Turbine," Complexity, Hindawi, vol. 2019, pages 1-15, April.
    15. Ming-Fa Tsai & Chung-Shi Tseng & Bor-Yuh Lin, 2020. "Phase Voltage-Oriented Control of a PMSG Wind Generator for Unity Power Factor Correction," Energies, MDPI, vol. 13(21), pages 1-22, October.
    16. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    17. Li, Xuyang & Qiu, Yingning & Feng, Yanhui & Wang, Zheng, 2021. "Wind turbine power prediction considering wake effects with dual laser beam LiDAR measured yaw misalignment," Applied Energy, Elsevier, vol. 299(C).
    18. Sung-Won Lee & Kwan-Ho Chun, 2019. "Adaptive Sliding Mode Control for PMSG Wind Turbine Systems," Energies, MDPI, vol. 12(4), pages 1-17, February.
    19. Kolesnik, Sergei & Sitbon, Moshe & Gadelovits, Shlomo & Suntio, Teuvo & Kuperman, Alon, 2015. "Interfacing renewable energy sources for maximum power transfer—Part II: Dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1771-1783.
    20. Ganjefar, Soheil & Ghassemi, Ali Akbar & Ahmadi, Mohamad Mehdi, 2014. "Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network," Energy, Elsevier, vol. 67(C), pages 444-453.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2399-:d:644040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.