IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i17p2043-d621399.html
   My bibliography  Save this article

COVID-19 Mortality Prediction Using Machine Learning-Integrated Random Forest Algorithm under Varying Patient Frailty

Author

Listed:
  • Erwin Cornelius

    (Department of Mathematics, Illinois State University, Normal, IL 61701, USA)

  • Olcay Akman

    (Department of Mathematics, Illinois State University, Normal, IL 61701, USA)

  • Dan Hrozencik

    (Department of Mathematics, Chicago State University, Chicago, IL 60628, USA)

Abstract

The abundance of type and quantity of available data in the healthcare field has led many to utilize machine learning approaches to keep up with this influx of data. Data pertaining to COVID-19 is an area of recent interest. The widespread influence of the virus across the United States creates an obvious need to identify groups of individuals that are at an increased risk of mortality from the virus. We propose a so-called clustered random forest approach to predict COVID-19 patient mortality. We use this approach to examine the hidden heterogeneity of patient frailty by examining demographic information for COVID-19 patients. We find that our clustered random forest approach attains predictive performance comparable to other published methods. We also find that follow-up analysis with neural network modeling and k-means clustering provide insight into the type and magnitude of mortality risks associated with COVID-19.

Suggested Citation

  • Erwin Cornelius & Olcay Akman & Dan Hrozencik, 2021. "COVID-19 Mortality Prediction Using Machine Learning-Integrated Random Forest Algorithm under Varying Patient Frailty," Mathematics, MDPI, vol. 9(17), pages 1-22, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2043-:d:621399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/17/2043/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/17/2043/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alfaro, Esteban & Gamez, Matias & García, Noelia, 2013. "adabag: An R Package for Classification with Boosting and Bagging," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i02).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Joonho & Kim, Hyunjoong, 2017. "RHSBoost: Improving classification performance in imbalance data," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 1-13.
    2. Antonella Plaia & Simona Buscemi & Johannes Fürnkranz & Eneldo Loza Mencía, 2022. "Comparing Boosting and Bagging for Decision Trees of Rankings," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 78-99, March.
    3. Junseok Lee & Ji-Ho Kang & Sunghae Jun & Hyunwoong Lim & Dongsik Jang & Sangsung Park, 2018. "Ensemble Modeling for Sustainable Technology Transfer," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    4. Romero Martínez, Mariano & Carmona Ibáñez, Pedro & Pozuelo Campillo, José, 2021. "Utilidad del Deep Learning en la predicción del fracaso empresarial en el ámbito europeo || The usefulness of Deep Learning in the prediction of business failure at the European level," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 32(1), pages 392-414, December.
    5. Xu, Ningzhe & Nie, Qifan & Liu, Jun & Jones, Steven, 2024. "Linking short- and long-term impacts of the COVID-19 pandemic on travel behavior and travel preferences in Alabama: A machine learning-supported path analysis," Transport Policy, Elsevier, vol. 151(C), pages 46-62.
    6. Agustín J. Sánchez-Medina & Félix Blázquez-Santana & Jesús B. Alonso, 2019. "Do Auditors Reflect the True Image of the Company Contrary to the Clients’ Interests? An Artificial Intelligence Approach," Journal of Business Ethics, Springer, vol. 155(2), pages 529-545, March.
    7. Frédéric Kosmowski & Tigist Worku, 2018. "Evaluation of a miniaturized NIR spectrometer for cultivar identification: The case of barley, chickpea and sorghum in Ethiopia," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2043-:d:621399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.