IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i16p1959-d615516.html
   My bibliography  Save this article

DMO-QPSO: A Multi-Objective Quantum-Behaved Particle Swarm Optimization Algorithm Based on Decomposition with Diversity Control

Author

Listed:
  • Qi You

    (Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Wuxi 214122, China)

  • Jun Sun

    (Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Wuxi 214122, China)

  • Feng Pan

    (Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Wuxi 214122, China)

  • Vasile Palade

    (Faculty of Engineering and Computing, Coventry University, Coventry CV1 5FB, UK)

  • Bilal Ahmad

    (Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Wuxi 214122, China)

Abstract

The decomposition-based multi-objective evolutionary algorithm (MOEA/D) has shown remarkable effectiveness in solving multi-objective problems (MOPs). In this paper, we integrate the quantum-behaved particle swarm optimization (QPSO) algorithm with the MOEA/D framework in order to make the QPSO be able to solve MOPs effectively, with the advantage of the QPSO being fully used. We also employ a diversity controlling mechanism to avoid the premature convergence especially at the later stage of the search process, and thus further improve the performance of our proposed algorithm. In addition, we introduce a number of nondominated solutions to generate the global best for guiding other particles in the swarm. Experiments are conducted to compare the proposed algorithm, DMO-QPSO, with four multi-objective particle swarm optimization algorithms and one multi-objective evolutionary algorithm on 15 test functions, including both bi-objective and tri-objective problems. The results show that the performance of the proposed DMO-QPSO is better than other five algorithms in solving most of these test problems. Moreover, we further study the impact of two different decomposition approaches, i.e., the penalty-based boundary intersection (PBI) and Tchebycheff (TCH) approaches, as well as the polynomial mutation operator on the algorithmic performance of DMO-QPSO.

Suggested Citation

  • Qi You & Jun Sun & Feng Pan & Vasile Palade & Bilal Ahmad, 2021. "DMO-QPSO: A Multi-Objective Quantum-Behaved Particle Swarm Optimization Algorithm Based on Decomposition with Diversity Control," Mathematics, MDPI, vol. 9(16), pages 1-20, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1959-:d:615516
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/16/1959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/16/1959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai Dai & Yuping Wang & Wei Yue, 2015. "A new orthogonal evolutionary algorithm based on decomposition for multi-objective optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(10), pages 1686-1698, October.
    2. Yudong Zhang & Lenan Wu & Shuihua Wang, 2013. "UCAV Path Planning by Fitness-Scaling Adaptive Chaotic Particle Swarm Optimization," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-9, July.
    3. Lin, Qiuzhen & Li, Jianqiang & Du, Zhihua & Chen, Jianyong & Ming, Zhong, 2015. "A novel multi-objective particle swarm optimization with multiple search strategies," European Journal of Operational Research, Elsevier, vol. 247(3), pages 732-744.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Han & Yu-Wen-Tian Sun & Qing-Hua Ling, 2018. "An Improved Multiobjective Quantum-Behaved Particle Swarm Optimization Based on Double Search Strategy and Circular Transposon Mechanism," Complexity, Hindawi, vol. 2018, pages 1-22, November.
    2. Zhang, XuWei & Liu, Hao & Tu, LiangPing & Zhao, Jian, 2020. "An efficient multi-objective optimization algorithm based on level swarm optimizer," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 588-602.
    3. Zhang, Yue & Zhang, Qi & Farnoosh, Arash & Chen, Siyuan & Li, Yan, 2019. "GIS-Based Multi-Objective Particle Swarm Optimization of charging stations for electric vehicles," Energy, Elsevier, vol. 169(C), pages 844-853.
    4. Alfredo Alcayde & Raul BaƱos & Francisco M. Arrabal-Campos & Francisco G. Montoya, 2019. "Optimization of the Contracted Electric Power by Means of Genetic Algorithms," Energies, MDPI, vol. 12(7), pages 1-13, April.
    5. Ying Sun & Yuelin Gao, 2019. "A Multi-Objective Particle Swarm Optimization Algorithm Based on Gaussian Mutation and an Improved Learning Strategy," Mathematics, MDPI, vol. 7(2), pages 1-16, February.
    6. Liu, Ruochen & Li, Jianxia & fan, Jing & Mu, Caihong & Jiao, Licheng, 2017. "A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1028-1051.
    7. Zouache, Djaafar & Moussaoui, Abdelouahab & Ben Abdelaziz, Fouad, 2018. "A cooperative swarm intelligence algorithm for multi-objective discrete optimization with application to the knapsack problem," European Journal of Operational Research, Elsevier, vol. 264(1), pages 74-88.
    8. Yong Wang & Jiayi Zhe & Xiuwen Wang & Yaoyao Sun & Haizhong Wang, 2022. "Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows," Sustainability, MDPI, vol. 14(11), pages 1-37, May.
    9. Chiranjit Changdar & Rajat Kumar Pal & Ghanshaym Singha Mahapatra & Abhinandan Khan, 2020. "A genetic algorithm based approach to solve multi-resource multi-objective knapsack problem for vegetable wholesalers in fuzzy environment," Operational Research, Springer, vol. 20(3), pages 1321-1352, September.
    10. J. Uthayakumar & Noura Metawa & K. Shankar & S. K. Lakshmanaprabu, 2020. "RETRACTED ARTICLE: Intelligent hybrid model for financial crisis prediction using machine learning techniques," Information Systems and e-Business Management, Springer, vol. 18(4), pages 617-645, December.
    11. Yu, Shiwei & Zheng, Shuhong & Gao, Shiwei & Yang, Juan, 2017. "A multi-objective decision model for investment in energy savings and emission reductions in coal mining," European Journal of Operational Research, Elsevier, vol. 260(1), pages 335-347.
    12. Capitanescu, F. & Marvuglia, A. & Benetto, E. & Ahmadi, A. & Tiruta-Barna, L., 2017. "Linear programming-based directed local search for expensive multi-objective optimization problems: Application to drinking water production plants," European Journal of Operational Research, Elsevier, vol. 262(1), pages 322-334.
    13. Xu, Gang & Luo, Kun & Jing, Guoxiu & Yu, Xiang & Ruan, Xiaojun & Song, Jun, 2020. "On convergence analysis of multi-objective particle swarm optimization algorithm," European Journal of Operational Research, Elsevier, vol. 286(1), pages 32-38.
    14. Neungmatcha, Woraya, 2016. "Multi-objective particle swarm optimization for mechanical harvester route planning of sugarcane field operationsAuthor-Name: Sethanan, Kanchana," European Journal of Operational Research, Elsevier, vol. 252(3), pages 969-984.
    15. Ma, Xuemin & Yang, Jingming & Sun, Hao & Hu, Ziyu & Wei, Lixin, 2021. "Feature information prediction algorithm for dynamic multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 295(3), pages 965-981.
    16. Yue, Wei & Wang, Yuping, 2017. "A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 124-140.
    17. Farshad Rezaei & Hamid R. Safavi & Maryam Zekri, 2017. "A Hybrid Fuzzy-Based Multi-Objective PSO Algorithm for Conjunctive Water Use and Optimal Multi-Crop Pattern Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1139-1155, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1959-:d:615516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.