IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i16p1840-d608279.html
   My bibliography  Save this article

A Self-Adaptive Cuckoo Search Algorithm Using a Machine Learning Technique

Author

Listed:
  • Nicolás Caselli

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile)

  • Ricardo Soto

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile)

  • Broderick Crawford

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile)

  • Sergio Valdivia

    (Dirección de Tecnologías de Información y Comunicación, Universidad de Valparaíso, Valparaíso 2361864, Chile)

  • Rodrigo Olivares

    (Escuela de Ingeniería Informática, Universidad de Valparaíso, Valparaíso 2362905, Chile)

Abstract

Metaheuristics are intelligent problem-solvers that have been very efficient in solving huge optimization problems for more than two decades. However, the main drawback of these solvers is the need for problem-dependent and complex parameter setting in order to reach good results. This paper presents a new cuckoo search algorithm able to self-adapt its configuration, particularly its population and the abandon probability. The self-tuning process is governed by using machine learning, where cluster analysis is employed to autonomously and properly compute the number of agents needed at each step of the solving process. The goal is to efficiently explore the space of possible solutions while alleviating human effort in parameter configuration. We illustrate interesting experimental results on the well-known set covering problem, where the proposed approach is able to compete against various state-of-the-art algorithms, achieving better results in one single run versus 20 different configurations. In addition, the result obtained is compared with similar hybrid bio-inspired algorithms illustrating interesting results for this proposal.

Suggested Citation

  • Nicolás Caselli & Ricardo Soto & Broderick Crawford & Sergio Valdivia & Rodrigo Olivares, 2021. "A Self-Adaptive Cuckoo Search Algorithm Using a Machine Learning Technique," Mathematics, MDPI, vol. 9(16), pages 1-28, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1840-:d:608279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/16/1840/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/16/1840/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    2. Idiano D’Adamo & Rocío González-Sánchez & Maria Sonia Medina-Salgado & Davide Settembre-Blundo, 2021. "E-Commerce Calls for Cyber-Security and Sustainability: How European Citizens Look for a Trusted Online Environment," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    3. Vasko, Francis J. & Wolf, Floyd E. & Stott, Kenneth L., 1989. "A set covering approach to metallurgical grade assignment," European Journal of Operational Research, Elsevier, vol. 38(1), pages 27-34, January.
    4. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2020. "Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting," Energies, MDPI, vol. 13(2), pages 1-21, January.
    5. Caruso, G. & Gattone, S.A. & Fortuna, F. & Di Battista, T., 2021. "Cluster Analysis for mixed data: An application to credit risk evaluation," Socio-Economic Planning Sciences, Elsevier, vol. 73(C).
    6. Alberto Caprara & Paolo Toth & Matteo Fischetti, 2000. "Algorithms for the Set Covering Problem," Annals of Operations Research, Springer, vol. 98(1), pages 353-371, December.
    7. Ricardo Soto & Broderick Crawford & Rodrigo Olivares & Carla Taramasco & Ignacio Figueroa & Álvaro Gómez & Carlos Castro & Fernando Paredes, 2018. "Adaptive Black Hole Algorithm for Solving the Set Covering Problem," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabián Riquelme & Francisco Muñoz & Rodrigo Olivares, 2023. "A depth-based heuristic to solve the multi-objective influence spread problem using particle swarm optimization," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1267-1285, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio Valdivia & Ricardo Soto & Broderick Crawford & Nicolás Caselli & Fernando Paredes & Carlos Castro & Rodrigo Olivares, 2020. "Clustering-Based Binarization Methods Applied to the Crow Search Algorithm for 0/1 Combinatorial Problems," Mathematics, MDPI, vol. 8(7), pages 1-42, July.
    2. Ángel Acevedo-Duque & Romel Gonzalez-Diaz & Elena Cachicatari Vargas & Anherys Paz-Marcano & Sheyla Muller-Pérez & Guido Salazar-Sepúlveda & Giulia Caruso & Idiano D’Adamo, 2021. "Resilience, Leadership and Female Entrepreneurship within the Context of SMEs: Evidence from Latin America," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    3. Rongbing Huang & Seokjin Kim & Mozart Menezes, 2010. "Facility location for large-scale emergencies," Annals of Operations Research, Springer, vol. 181(1), pages 271-286, December.
    4. Marín, Alfredo & Martínez-Merino, Luisa I. & Rodríguez-Chía, Antonio M. & Saldanha-da-Gama, Francisco, 2018. "Multi-period stochastic covering location problems: Modeling framework and solution approach," European Journal of Operational Research, Elsevier, vol. 268(2), pages 432-449.
    5. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    6. Coslovich, Luca & Pesenti, Raffaele & Ukovich, Walter, 2006. "Minimizing fleet operating costs for a container transportation company," European Journal of Operational Research, Elsevier, vol. 171(3), pages 776-786, June.
    7. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.
    8. Karl Schneeberger & Karl Doerner & Andrea Kurz & Michael Schilde, 2016. "Ambulance location and relocation models in a crisis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 1-27, March.
    9. Eliş, Haluk & Tansel, Barbaros & Oğuz, Osman & Güney, Mesut & Kian, Ramez, 2021. "On guarding real terrains: The terrain guarding and the blocking path problems," Omega, Elsevier, vol. 102(C).
    10. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    11. Davood Shishebori & Lawrence Snyder & Mohammad Jabalameli, 2014. "A Reliable Budget-Constrained FL/ND Problem with Unreliable Facilities," Networks and Spatial Economics, Springer, vol. 14(3), pages 549-580, December.
    12. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    13. Muhammad Jawad Sajid & Ernesto D. R. Santibanez Gonzalez, 2021. "The Impact of Direct and Indirect COVID-19 Related Demand Shocks on Sectoral CO 2 Emissions: Evidence from Major Asia Pacific Countries," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    14. Hamid Mousavi & Soroush Avakh Darestani & Parham Azimi, 2021. "An artificial neural network based mathematical model for a stochastic health care facility location problem," Health Care Management Science, Springer, vol. 24(3), pages 499-514, September.
    15. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    16. Chen, Liang & Chen, Sheng-Jie & Chen, Wei-Kun & Dai, Yu-Hong & Quan, Tao & Chen, Juan, 2023. "Efficient presolving methods for solving maximal covering and partial set covering location problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 73-87.
    17. Alfredo Candela Esclapez & Miguel López García & Sergio Valero Verdú & Carolina Senabre Blanes, 2022. "Automatic Selection of Temperature Variables for Short-Term Load Forecasting," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    18. İbrahim Muter & Ş. İlker Birbil & Güvenç Şahin, 2010. "Combination of Metaheuristic and Exact Algorithms for Solving Set Covering-Type Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 603-619, November.
    19. Erhan Erkut & Armann Ingolfsson & Güneş Erdoğan, 2008. "Ambulance location for maximum survival," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(1), pages 42-58, February.
    20. Xin Feng & Alan T. Murray, 2018. "Allocation using a heterogeneous space Voronoi diagram," Journal of Geographical Systems, Springer, vol. 20(3), pages 207-226, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1840-:d:608279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.