IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i15p1801-d604219.html
   My bibliography  Save this article

Opinion Diversity and the Resilience of Cooperation in Dynamical Networks

Author

Listed:
  • Adam Lee Miles

    (Department of Computing and Mathematics, John R. Dalton Building, All Saints Campus, Manchester M15 6BH, UK)

  • Matteo Cavaliere

    (Department of Computing and Mathematics, John R. Dalton Building, All Saints Campus, Manchester M15 6BH, UK)

Abstract

Across various scenarios, individuals cooperate with others to contribute towards a shared goal and ensure self-preservation. In game theory, the act of cooperation is considered as an individual producing some form of benefit to be utilised by others, under the expectation others will return the favour. In several scenarios, individuals make use of their own information to aid with their decision about who to connect and cooperate with. However, the choice of cooperation can be taken advantage of by opportunistic defectors, which can lead to significant disruption. This paper investigates how the diversity of opinion can contribute to the structure and mechanics of a dynamical network model and to the resilience of cooperation, by utilising a computational model where individuals make use of both public and private information to implement their decision. Our results show that increasing diversity leads to more stable, less connected and less prosperous networks coupled to more frequent, but shallower information cascades. Our work generally shows that the outcome of the conflict between cooperators and cheaters strongly depends on the interplay between population structure, individual decision making and individual opinions.

Suggested Citation

  • Adam Lee Miles & Matteo Cavaliere, 2021. "Opinion Diversity and the Resilience of Cooperation in Dynamical Networks," Mathematics, MDPI, vol. 9(15), pages 1-18, July.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:15:p:1801-:d:604219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/15/1801/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/15/1801/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780511771576 is not listed on IDEAS
    2. Bin Wu & Da Zhou & Feng Fu & Qingjun Luo & Long Wang & Arne Traulsen, 2010. "Evolution of Cooperation on Stochastic Dynamical Networks," PLOS ONE, Public Library of Science, vol. 5(6), pages 1-7, June.
    3. Easley,David & Kleinberg,Jon, 2010. "Networks, Crowds, and Markets," Cambridge Books, Cambridge University Press, number 9780521195331, January.
    4. Sushil Bikhchandani & David Hirshleifer & Ivo Welch, 1998. "Learning from the Behavior of Others: Conformity, Fads, and Informational Cascades," Journal of Economic Perspectives, American Economic Association, vol. 12(3), pages 151-170, Summer.
    5. Marco Tomassini & Enea Pestelacci, 2010. "Coordination Games on Dynamical Networks," Games, MDPI, vol. 1(3), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glover, Dominic & Kim, Sung Kyu & Stone, Glenn Davis, 2020. "Golden Rice and technology adoption theory: A study of seed choice dynamics among rice growers in the Philippines," Technology in Society, Elsevier, vol. 60(C).
    2. Sinan Aral & Dylan Walker, 2014. "Tie Strength, Embeddedness, and Social Influence: A Large-Scale Networked Experiment," Management Science, INFORMS, vol. 60(6), pages 1352-1370, June.
    3. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    4. Fishman, Arthur & Fishman, Ram & Gneezy, Uri, 2019. "A tale of two food stands: Observational learning in the field," Journal of Economic Behavior & Organization, Elsevier, vol. 159(C), pages 101-108.
    5. Amrei Lahno & Marta Serra-Garcia, 2015. "Peer effects in risk taking: Envy or conformity?," Journal of Risk and Uncertainty, Springer, vol. 50(1), pages 73-95, February.
    6. Martin L. Weitzman, 2015. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(4), pages 1049-1068, October.
    7. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    8. Alexander L. Brown & Zhikang Eric Chua & Colin F. Camerer, 2009. "Learning and Visceral Temptation in Dynamic Saving Experiments," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(1), pages 197-231.
    9. Guo Weilong & Minca Andreea & Wang Li, 2016. "The topology of overlapping portfolio networks," Statistics & Risk Modeling, De Gruyter, vol. 33(3-4), pages 139-155, December.
    10. Coleman, S., 2010. "Russian Election Reform and the Effect of Social Conformity on Voting and the Party System: 2007 and 2008," Journal of the New Economic Association, New Economic Association, issue 5, pages 73-90.
    11. Wang, Peiwen & Chen, Minghua & Wu, Ji & Yan, Yuanyun, 2023. "Do peer effects matter in bank risk? Some cross-country evidence," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    12. Jiali Liu & Xinran Xie & Yu Duan & Liang Tang, 2023. "Peer effects and the mechanisms in corporate capital structure: evidence from Chinese listed firms," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 295-326, March.
    13. Dominic D.R. Burns & Ana B. Sendova-Franks & Nigel R. Franks, 2016. "The effect of social information on the collective choices of ant colonies," Behavioral Ecology, International Society for Behavioral Ecology, vol. 27(4), pages 1033-1040.
    14. Kobayashi, Teruyoshi & Takaguchi, Taro, 2018. "Identifying relationship lending in the interbank market: A network approach," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 20-36.
    15. Konstantinos Antoniadis & Kostas Zafiropoulos & Vasiliki Vrana, 2016. "A Method for Assessing the Performance of e-Government Twitter Accounts," Future Internet, MDPI, vol. 8(2), pages 1-18, April.
    16. Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.
    17. Davide Crapis & Bar Ifrach & Costis Maglaras & Marco Scarsini, 2017. "Monopoly Pricing in the Presence of Social Learning," Management Science, INFORMS, vol. 63(11), pages 3586-3608, November.
    18. Jørgen Vitting Andersen & Ioannis Vrontos & Petros Dellaportas & Serge Galam, 2014. "Communication impacting financial markets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00982959, HAL.
    19. Langley, David J. & Hoeve, Maarten C. & Ortt, J. Roland & Pals, Nico & van der Vecht, Bob, 2014. "Patterns of Herding and their Occurrence in an Online Setting," Journal of Interactive Marketing, Elsevier, vol. 28(1), pages 16-25.
    20. William Arrata & Alejandro Bernales & Virginie Coudert, 2013. "The Effects of Derivatives on Underlying Financial Markets: Equity Options, Commodity Derivatives and Credit Default Swaps," SUERF 50th Anniversary Volume Chapters, in: Morten Balling & Ernest Gnan (ed.), 50 Years of Money and Finance: Lessons and Challenges, chapter 13, pages 445-473, SUERF - The European Money and Finance Forum.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:15:p:1801-:d:604219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.