IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i15p1775-d602281.html
   My bibliography  Save this article

Randomized Simplicial Hessian Update

Author

Listed:
  • Árpád Bűrmen

    (Faculty of Electrical Engineering, University of Ljubljana, Tržaška Cesta 25, SI-1000 Ljubljana, Slovenia)

  • Tadej Tuma

    (Faculty of Electrical Engineering, University of Ljubljana, Tržaška Cesta 25, SI-1000 Ljubljana, Slovenia)

  • Jernej Olenšek

    (Faculty of Electrical Engineering, University of Ljubljana, Tržaška Cesta 25, SI-1000 Ljubljana, Slovenia)

Abstract

Recently, a derivative-free optimization algorithm was proposed that utilizes a minimum Frobenius norm (MFN) Hessian update for estimating the second derivative information, which in turn is used for accelerating the search. The proposed update formula relies only on computed function values and is a closed-form expression for a special case of a more general approach first published by Powell. This paper analyzes the convergence of the proposed update formula under the assumption that the points from R n where the function value is known are random. The analysis assumes that the N + 2 points used by the update formula are obtained by adding N + 1 vectors to a central point. The vectors are obtained by transforming a prototype set of N + 1 vectors with a random orthogonal matrix from the Haar measure. The prototype set must positively span a N ≤ n dimensional subspace. Because the update is random by nature we can estimate a lower bound on the expected improvement of the approximate Hessian. This lower bound was derived for a special case of the proposed update by Leventhal and Lewis. We generalize their result and show that the amount of improvement greatly depends on N as well as the choice of the vectors in the prototype set. The obtained result is then used for analyzing the performance of the update based on various commonly used prototype sets. One of the results obtained by this analysis states that a regular n -simplex is a bad choice for a prototype set because it does not guarantee any improvement of the approximate Hessian.

Suggested Citation

  • Árpád Bűrmen & Tadej Tuma & Jernej Olenšek, 2021. "Randomized Simplicial Hessian Update," Mathematics, MDPI, vol. 9(15), pages 1-18, July.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:15:p:1775-:d:602281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/15/1775/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/15/1775/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Árpád Bűrmen & Iztok Fajfar, 2019. "Mesh adaptive direct search with simplicial Hessian update," Computational Optimization and Applications, Springer, vol. 74(3), pages 645-667, December.
    2. Árpád Bűrmen & Jernej Olenšek & Tadej Tuma, 2015. "Mesh adaptive direct search with second directional derivative-based Hessian update," Computational Optimization and Applications, Springer, vol. 62(3), pages 693-715, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Árpád Bűrmen & Tadej Tuma, 2022. "Preface to the Special Issue on “Optimization Theory and Applications”," Mathematics, MDPI, vol. 10(24), pages 1-3, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Árpád Bűrmen & Iztok Fajfar, 2019. "Mesh adaptive direct search with simplicial Hessian update," Computational Optimization and Applications, Springer, vol. 74(3), pages 645-667, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:15:p:1775-:d:602281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.