IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i15p1753-d601321.html
   My bibliography  Save this article

New Modifications of Integral Inequalities via ℘ -Convexity Pertaining to Fractional Calculus and Their Applications

Author

Listed:
  • Saima Rashid

    (Department of Mathematics, Government College University, Faisalabad 38000, Pakistan
    These authors contributed equally to this work.)

  • Aasma Khalid

    (Department of Mathematics, Government College Women University, Faisalabad 38000, Pakistan
    These authors contributed equally to this work.)

  • Omar Bazighifan

    (Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186 Roma, Italy
    Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout 50512, Yemen
    These authors contributed equally to this work.)

  • Georgia Irina Oros

    (Department of Mathematics and Computer Science, University of Oradea, 410087 Oradea, Romania
    These authors contributed equally to this work.)

Abstract

Integral inequalities for ℘ -convex functions are established by using a generalised fractional integral operator based on Raina’s function. Hermite–Hadamard type inequality is presented for ℘ -convex functions via generalised fractional integral operator. A novel parameterized auxiliary identity involving generalised fractional integral is proposed for differentiable mappings. By using auxiliary identity, we derive several Ostrowski type inequalities for functions whose absolute values are ℘ -convex mappings. It is presented that the obtained outcomes exhibit classical convex and harmonically convex functions which have been verified using Riemann–Liouville fractional integral. Several generalisations and special cases are carried out to verify the robustness and efficiency of the suggested scheme in matrices and Fox–Wright generalised hypergeometric functions.

Suggested Citation

  • Saima Rashid & Aasma Khalid & Omar Bazighifan & Georgia Irina Oros, 2021. "New Modifications of Integral Inequalities via ℘ -Convexity Pertaining to Fractional Calculus and Their Applications," Mathematics, MDPI, vol. 9(15), pages 1-23, July.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:15:p:1753-:d:601321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/15/1753/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/15/1753/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saima Rashid & Rehana Ashraf & Kottakkaran Sooppy Nisar & Thabet Abdeljawad & Imtiaz Ahmad, 2020. "Estimation of Integral Inequalities Using the Generalized Fractional Derivative Operator in the Hilfer Sense," Journal of Mathematics, Hindawi, vol. 2020, pages 1-15, October.
    2. İmdat İşcan, 2014. "Hermite-Hadamard and Simpson-Like Type Inequalities for Differentiable Harmonically Convex Functions," Journal of Mathematics, Hindawi, vol. 2014, pages 1-10, June.
    3. Rashid, Saima & Sultana, Sobia & Hammouch, Zakia & Jarad, Fahd & Hamed, Y.S., 2021. "Novel aspects of discrete dynamical type inequalities within fractional operators having generalized ℏ-discrete Mittag-Leffler kernels and application," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yahya Almalki & Waqar Afzal, 2023. "Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr - h -Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings," Mathematics, MDPI, vol. 11(19), pages 1-21, September.
    2. Muhammad Aamir Ali & Fongchan Wannalookkhee & Hüseyin Budak & Sina Etemad & Shahram Rezapour, 2022. "New Hermite–Hadamard and Ostrowski-Type Inequalities for Newly Introduced Co-Ordinated Convexity with Respect to a Pair of Functions," Mathematics, MDPI, vol. 10(19), pages 1-24, September.
    3. Imran Abbas Baloch & İmdat İşcan, 2015. "Some Ostrowski Type Inequalities for Harmonically -Convex Functions in Second Sense," International Journal of Analysis, Hindawi, vol. 2015, pages 1-9, October.
    4. Shin Min Kang & Ghulam Abbas & Ghulam Farid & Waqas Nazeer, 2018. "A Generalized Fejér–Hadamard Inequality for Harmonically Convex Functions via Generalized Fractional Integral Operator and Related Results," Mathematics, MDPI, vol. 6(7), pages 1-16, July.
    5. Muhammad Bilal Khan & Gustavo Santos-García & Hatim Ghazi Zaini & Savin Treanță & Mohamed S. Soliman, 2022. "Some New Concepts Related to Integral Operators and Inequalities on Coordinates in Fuzzy Fractional Calculus," Mathematics, MDPI, vol. 10(4), pages 1-26, February.
    6. Muhammad Bilal Khan & Aleksandr Rakhmangulov & Najla Aloraini & Muhammad Aslam Noor & Mohamed S. Soliman, 2023. "Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    7. Xia Wu & JinRong Wang & Jialu Zhang, 2019. "Hermite–Hadamard-Type Inequalities for Convex Functions via the Fractional Integrals with Exponential Kernel," Mathematics, MDPI, vol. 7(9), pages 1-12, September.
    8. Dafang Zhao & Ghazala Gulshan & Muhammad Aamir Ali & Kamsing Nonlaopon, 2022. "Some New Midpoint and Trapezoidal-Type Inequalities for General Convex Functions in q -Calculus," Mathematics, MDPI, vol. 10(3), pages 1-14, January.
    9. Muhammad Tariq & Soubhagya Kumar Sahoo & Sotiris K. Ntouyas & Omar Mutab Alsalami & Asif Ali Shaikh & Kamsing Nonlaopon, 2022. "Some New Mathematical Integral Inequalities Pertaining to Generalized Harmonic Convexity with Applications," Mathematics, MDPI, vol. 10(18), pages 1-21, September.
    10. Muhammad Bilal Khan & Hakeem A. Othman & Aleksandr Rakhmangulov & Mohamed S. Soliman & Alia M. Alzubaidi, 2023. "Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    11. Fangfang Shi & Guoju Ye & Dafang Zhao & Wei Liu, 2020. "Some Fractional Hermite–Hadamard Type Inequalities for Interval-Valued Functions," Mathematics, MDPI, vol. 8(4), pages 1-10, April.
    12. Hüseyin Budak & Fatih Hezenci & Hasan Kara & Mehmet Zeki Sarikaya, 2023. "Bounds for the Error in Approximating a Fractional Integral by Simpson’s Rule," Mathematics, MDPI, vol. 11(10), pages 1-16, May.
    13. Waqar Afzal & Alina Alb Lupaş & Khurram Shabbir, 2022. "Hermite–Hadamard and Jensen-Type Inequalities for Harmonical ( h 1 , h 2 )-Godunova–Levin Interval-Valued Functions," Mathematics, MDPI, vol. 10(16), pages 1-16, August.
    14. Praveen Agarwal & Mahir Kadakal & İmdat İşcan & Yu-Ming Chu, 2020. "Better Approaches for n -Times Differentiable Convex Functions," Mathematics, MDPI, vol. 8(6), pages 1-11, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:15:p:1753-:d:601321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.