IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i18p3286-d911610.html
   My bibliography  Save this article

Some New Mathematical Integral Inequalities Pertaining to Generalized Harmonic Convexity with Applications

Author

Listed:
  • Muhammad Tariq

    (Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan
    Department of Mathematics, Baluchistan Residential College Loralai, Loralai 84800, Pakistan)

  • Soubhagya Kumar Sahoo

    (Department of Mathematics, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030, India
    Department of Mathematics, Aryan Institute of Engineering and Technology, Bhubaneswar 752050, India)

  • Sotiris K. Ntouyas

    (Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece
    Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia)

  • Omar Mutab Alsalami

    (Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Asif Ali Shaikh

    (Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan)

  • Kamsing Nonlaopon

    (Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand)

Abstract

The subject of convex analysis and integral inequalities represents a comprehensive and absorbing field of research within the field of mathematical interpretation. In recent times, the strategies of convex theory and integral inequalities have become the subject of intensive research at historical and contemporary times because of their applications in various branches of sciences. In this work, we reveal the idea of a new version of generalized harmonic convexity i.e., an m –polynomial p –harmonic s –type convex function. We discuss this new idea by employing some examples and demonstrating some interesting algebraic properties. Furthermore, this work leads us to establish some new generalized Hermite–Hadamard- and generalized Ostrowski-type integral identities. Additionally, employing Hölder’s inequality and the power-mean inequality, we present some refinements of the H–H (Hermite–Hadamard) inequality and Ostrowski inequalities. Finally, we investigate some applications to special means involving the established results. These new results yield us some generalizations of the prior results in the literature. We believe that the methodology and concept examined in this paper will further inspire interested researchers.

Suggested Citation

  • Muhammad Tariq & Soubhagya Kumar Sahoo & Sotiris K. Ntouyas & Omar Mutab Alsalami & Asif Ali Shaikh & Kamsing Nonlaopon, 2022. "Some New Mathematical Integral Inequalities Pertaining to Generalized Harmonic Convexity with Applications," Mathematics, MDPI, vol. 10(18), pages 1-21, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3286-:d:911610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/18/3286/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/18/3286/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mihai, Marcela V. & Noor, Muhammad Aslam & Noor, Khalida Inayat & Awan, Muhammad Uzair, 2015. "Some integral inequalities for harmonic h-convex functions involving hypergeometric functions," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 257-262.
    2. D. Baleanu & S. D. Purohit, 2014. "Chebyshev Type Integral Inequalities Involving the Fractional Hypergeometric Operators," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-10, April.
    3. İmdat İşcan, 2014. "Hermite-Hadamard and Simpson Type Inequalities for Differentiable P -GA-Functions," International Journal of Analysis, Hindawi, vol. 2014, pages 1-6, May.
    4. Sotiris K. Ntouyas & Sunil D. Purohit & Jessada Tariboon, 2014. "Certain Chebyshev Type Integral Inequalities Involving Hadamard’s Fractional Operators," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-7, May.
    5. İmdat İşcan, 2014. "Hermite-Hadamard and Simpson-Like Type Inequalities for Differentiable Harmonically Convex Functions," Journal of Mathematics, Hindawi, vol. 2014, pages 1-10, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Bilal Khan & Gustavo Santos-García & Hatim Ghazi Zaini & Savin Treanță & Mohamed S. Soliman, 2022. "Some New Concepts Related to Integral Operators and Inequalities on Coordinates in Fuzzy Fractional Calculus," Mathematics, MDPI, vol. 10(4), pages 1-26, February.
    2. Gauhar Rahman & Zafar Ullah & Aftab Khan & Erhan Set & Kottakkaran Sooppy Nisar, 2019. "Certain Chebyshev-Type Inequalities Involving Fractional Conformable Integral Operators," Mathematics, MDPI, vol. 7(4), pages 1-9, April.
    3. Muhammad Bilal Khan & Hakeem A. Othman & Aleksandr Rakhmangulov & Mohamed S. Soliman & Alia M. Alzubaidi, 2023. "Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    4. Fangfang Shi & Guoju Ye & Dafang Zhao & Wei Liu, 2020. "Some Fractional Hermite–Hadamard Type Inequalities for Interval-Valued Functions," Mathematics, MDPI, vol. 8(4), pages 1-10, April.
    5. Waqar Afzal & Alina Alb Lupaş & Khurram Shabbir, 2022. "Hermite–Hadamard and Jensen-Type Inequalities for Harmonical ( h 1 , h 2 )-Godunova–Levin Interval-Valued Functions," Mathematics, MDPI, vol. 10(16), pages 1-16, August.
    6. Aditya Mani Mishra & Dumitru Baleanu & Fairouz Tchier & Sunil Dutt Purohit, 2019. "Certain Results Comprising the Weighted Chebyshev Function Using Pathway Fractional Integrals," Mathematics, MDPI, vol. 7(10), pages 1-9, September.
    7. Gustavo Santos-García & Muhammad Bilal Khan & Hleil Alrweili & Ahmad Aziz Alahmadi & Sherif S. M. Ghoneim, 2022. "Hermite–Hadamard and Pachpatte Type Inequalities for Coordinated Preinvex Fuzzy-Interval-Valued Functions Pertaining to a Fuzzy-Interval Double Integral Operator," Mathematics, MDPI, vol. 10(15), pages 1-25, August.
    8. Yahya Almalki & Waqar Afzal, 2023. "Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr - h -Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings," Mathematics, MDPI, vol. 11(19), pages 1-21, September.
    9. Muhammad Aamir Ali & Fongchan Wannalookkhee & Hüseyin Budak & Sina Etemad & Shahram Rezapour, 2022. "New Hermite–Hadamard and Ostrowski-Type Inequalities for Newly Introduced Co-Ordinated Convexity with Respect to a Pair of Functions," Mathematics, MDPI, vol. 10(19), pages 1-24, September.
    10. Imran Abbas Baloch & İmdat İşcan, 2015. "Some Ostrowski Type Inequalities for Harmonically -Convex Functions in Second Sense," International Journal of Analysis, Hindawi, vol. 2015, pages 1-9, October.
    11. Shin Min Kang & Ghulam Abbas & Ghulam Farid & Waqas Nazeer, 2018. "A Generalized Fejér–Hadamard Inequality for Harmonically Convex Functions via Generalized Fractional Integral Operator and Related Results," Mathematics, MDPI, vol. 6(7), pages 1-16, July.
    12. Set, Erhan & Kashuri, Artion & Mumcu, İlker, 2021. "Chebyshev type inequalities by using generalized proportional Hadamard fractional integrals via Polya–Szegö inequality with applications," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    13. Muhammad Bilal Khan & Aleksandr Rakhmangulov & Najla Aloraini & Muhammad Aslam Noor & Mohamed S. Soliman, 2023. "Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    14. Xia Wu & JinRong Wang & Jialu Zhang, 2019. "Hermite–Hadamard-Type Inequalities for Convex Functions via the Fractional Integrals with Exponential Kernel," Mathematics, MDPI, vol. 7(9), pages 1-12, September.
    15. Wei Liu & Fangfang Shi & Guoju Ye & Dafang Zhao, 2022. "The Properties of Harmonically cr - h -Convex Function and Its Applications," Mathematics, MDPI, vol. 10(12), pages 1-15, June.
    16. Asfand Fahad & Ayesha & Yuanheng Wang & Saad Ihsaan Butt, 2023. "Jensen–Mercer and Hermite–Hadamard–Mercer Type Inequalities for GA- h -Convex Functions and Its Subclasses with Applications," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    17. Muhammad Adil Khan & Asadullah Sohail & Hidayat Ullah & Tareq Saeed, 2023. "Estimations of the Jensen Gap and Their Applications Based on 6-Convexity," Mathematics, MDPI, vol. 11(8), pages 1-25, April.
    18. Dafang Zhao & Ghazala Gulshan & Muhammad Aamir Ali & Kamsing Nonlaopon, 2022. "Some New Midpoint and Trapezoidal-Type Inequalities for General Convex Functions in q -Calculus," Mathematics, MDPI, vol. 10(3), pages 1-14, January.
    19. Hüseyin Budak & Fatih Hezenci & Hasan Kara & Mehmet Zeki Sarikaya, 2023. "Bounds for the Error in Approximating a Fractional Integral by Simpson’s Rule," Mathematics, MDPI, vol. 11(10), pages 1-16, May.
    20. Muhammad Amer Latif, 2023. "Some Companions of Fejér Type Inequalities Using GA-Convex Functions," Mathematics, MDPI, vol. 11(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3286-:d:911610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.