IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i13p1458-d579449.html
   My bibliography  Save this article

Supervised Classification of Diseases Based on an Improved Associative Algorithm

Author

Listed:
  • Raúl Jiménez-Cruz

    (Centro de Investigación en Computación del Instituto Politécnico Nacional, Juan de Dios Bátiz s/n, GAM, CDMX 07700, Mexico)

  • José-Luis Velázquez-Rodríguez

    (Centro de Investigación en Computación del Instituto Politécnico Nacional, Juan de Dios Bátiz s/n, GAM, CDMX 07700, Mexico)

  • Itzamá López-Yáñez

    (Centro de Innovación y Desarrollo Tecnológico en Cómputo del Instituto Politécnico Nacional, Juan de Dios Bátiz s/n, GAM, CDMX 07700, Mexico)

  • Yenny Villuendas-Rey

    (Centro de Innovación y Desarrollo Tecnológico en Cómputo del Instituto Politécnico Nacional, Juan de Dios Bátiz s/n, GAM, CDMX 07700, Mexico)

  • Cornelio Yáñez-Márquez

    (Centro de Investigación en Computación del Instituto Politécnico Nacional, Juan de Dios Bátiz s/n, GAM, CDMX 07700, Mexico)

Abstract

The linear associator is a classic associative memory model. However, due to its low performance, it is pertinent to note that very few linear associator applications have been published. The reason for this is that this model requires the vectors representing the patterns to be orthonormal, which is a big restriction. Some researchers have tried to create orthogonal projections to the vectors to feed the linear associator. However, this solution has serious drawbacks. This paper presents a proposal that effectively improves the performance of the linear associator when acting as a pattern classifier. For this, the proposal involves transforming the dataset using a powerful mathematical tool: the singular value decomposition. To perform the experiments, we selected fourteen medical datasets of two classes. All datasets exhibit balance, so it is possible to use accuracy as a performance measure. The effectiveness of our proposal was compared against nine supervised classifiers of the most important approaches (Bayes, nearest neighbors, decision trees, support vector machines, and neural networks), including three classifier ensembles. The Friedman and Holm tests show that our proposal had a significantly better performance than four of the nine classifiers. Furthermore, there are no significant differences against the other five, although three of them are ensembles.

Suggested Citation

  • Raúl Jiménez-Cruz & José-Luis Velázquez-Rodríguez & Itzamá López-Yáñez & Yenny Villuendas-Rey & Cornelio Yáñez-Márquez, 2021. "Supervised Classification of Diseases Based on an Improved Associative Algorithm," Mathematics, MDPI, vol. 9(13), pages 1-25, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:13:p:1458-:d:579449
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/13/1458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/13/1458/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Konstantinos Demertzis & Dimitrios Tsiotas & Lykourgos Magafas, 2020. "Modeling and Forecasting the COVID-19 Temporal Spread in Greece: An Exploratory Approach Based on Complex Network Defined Splines," IJERPH, MDPI, vol. 17(13), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Angelo Spena & Leonardo Palombi & Massimo Corcione & Alessandro Quintino & Mariachiara Carestia & Vincenzo Andrea Spena, 2020. "Predicting SARS-CoV-2 Weather-Induced Seasonal Virulence from Atmospheric Air Enthalpy," IJERPH, MDPI, vol. 17(23), pages 1-14, December.
    3. Dunfrey Pires Aragão & Davi Henrique dos Santos & Adriano Mondini & Luiz Marcos Garcia Gonçalves, 2021. "National Holidays and Social Mobility Behaviors: Alternatives for Forecasting COVID-19 Deaths in Brazil," IJERPH, MDPI, vol. 18(21), pages 1-24, November.
    4. Yiannis Contoyiannis & Stavros G. Stavrinides & Michael P. Hanias & Myron Kampitakis & Pericles Papadopoulos & Rodrigo Picos & Stelios M. Potirakis, 2020. "A Universal Physics-Based Model Describing COVID-19 Dynamics in Europe," IJERPH, MDPI, vol. 17(18), pages 1-19, September.
    5. Lakshman S. Thakur & Mikhail A. Bragin, 2021. "Data Interpolation by Near-Optimal Splines with Free Knots Using Linear Programming," Mathematics, MDPI, vol. 9(10), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:13:p:1458-:d:579449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.