IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i12p1442-d578706.html
   My bibliography  Save this article

Applications of the Network Simulation Method to Differential Equations with Singularities and Chaotic Behaviour

Author

Listed:
  • Joaquín Solano

    (Department of Automation, Electrical Engineering and Electronic Technology, Faculty of Industrial Engineering, Politechnic University of Cartagena (UPCT), 30202 Cartagena, Spain
    These authors contributed equally to this work.)

  • Francisco Balibrea

    (Department of Mathematics, Faculty of Mathematics, University of Murcia, 30100 Murcia, Spain
    These authors contributed equally to this work.)

  • José Andrés Moreno

    (Department of Mechanical Engineering, Materials and Manufacturing, Faculty of Industrial Engineering, Politechnic University of Cartagena (UPCT), 30202 Cartagena, Spain
    These authors contributed equally to this work.)

Abstract

In this paper, we deal with some applications of the network simulation method (NMS) to the non-linear differential equations derived of a parametric family associated to stated problems by Newton in and others like the parabolic mirror and van der Pol non-linear equation. We underly the efficientcy of the (NMS) method, compare it with Matlab procedures and present figures of solutions of the equations obtained by it on the mentioned problems. Additionally, we introduce also the electric-electronic circuits we have designed to be able of obtaining the solutions of the referred equations.

Suggested Citation

  • Joaquín Solano & Francisco Balibrea & José Andrés Moreno, 2021. "Applications of the Network Simulation Method to Differential Equations with Singularities and Chaotic Behaviour," Mathematics, MDPI, vol. 9(12), pages 1-12, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1442-:d:578706
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/12/1442/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/12/1442/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joaquín Solano & Javier Mulas-Pérez & Francisco Balibrea & José Andrés Moreno-Nicolás, 2024. "Truncation Error of the Network Simulation Method: Chaotic Dynamical Systems in Mechanical Engineering," Mathematics, MDPI, vol. 12(21), pages 1-19, November.
    2. Iván Alhama & José Antonio Jiménez-Valera & Manuel Cánovas & Francisco Alhama, 2024. "Deduction of the Dimensionless Groups and Type Curves of Temperature Profiles in Two-Layer Soils with Water Flow at Depth," Mathematics, MDPI, vol. 12(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1442-:d:578706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.