IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i21p3441-d1513499.html
   My bibliography  Save this article

Truncation Error of the Network Simulation Method: Chaotic Dynamical Systems in Mechanical Engineering

Author

Listed:
  • Joaquín Solano

    (Department of Mechanical Engineering, Materials and Manufacturing, Faculty of Industrial Engineering, Politechnic University of Cartagena, 30202 Cartagena, Spain
    These authors contributed equally to this work.)

  • Javier Mulas-Pérez

    (Department of Thermal and Fluid Engineering, Faculty of Industrial Engineering, Politechnic University of Cartagena, 30202 Cartagena, Spain
    These authors contributed equally to this work.)

  • Francisco Balibrea

    (Department of Mathematics, Faculty of Mathematics, University of Murcia, 30100 Murcia, Spain
    These authors contributed equally to this work.)

  • José Andrés Moreno-Nicolás

    (Department of Mechanical Engineering, Materials and Manufacturing, Faculty of Industrial Engineering, Politechnic University of Cartagena, 30202 Cartagena, Spain
    These authors contributed equally to this work.)

Abstract

This article focuses on the study of local truncation errors (LTEs) in the Network Simulation Method (NSM), specifically when using the trapezoidal method and Gear’s methods. The NSM, which represents differential equations through electrical circuit elements, offers advantages in solving nonlinear dynamic systems such as the van der Pol equation. The analysis compares the performance of these numerical methods in terms of their stability and error minimization, with particular emphasis on LTE. By leveraging circuit-based techniques prior to numerical application, the NSM improves convergence. This study evaluates the impact of step size on LTE and highlights the trade-offs between accuracy and computational cost when using the trapezoidal and Gear methods.

Suggested Citation

  • Joaquín Solano & Javier Mulas-Pérez & Francisco Balibrea & José Andrés Moreno-Nicolás, 2024. "Truncation Error of the Network Simulation Method: Chaotic Dynamical Systems in Mechanical Engineering," Mathematics, MDPI, vol. 12(21), pages 1-19, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:21:p:3441-:d:1513499
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/21/3441/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/21/3441/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:21:p:3441-:d:1513499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.