IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i9p1395-d401701.html
   My bibliography  Save this article

Fractional Order of Evolution Inclusion Coupled with a Time and State Dependent Maximal Monotone Operator

Author

Listed:
  • Charles Castaing

    (Département de Mathématiques, Université Montpellier II, Case Courrier 051, 34095 Montpellier CEDEX 5, France)

  • Christiane Godet-Thobie

    (Laboratoire de Mathématiques de Bretagne Atlantique, Université de Bretagne Occidentale, CNRS UMR 6205, 6, Avenue Victor Le Gorgeu, CS 9387, F-29238 Brest CEDEX 3, France)

  • Le Xuan Truong

    (Department of Mathematics and Statistics, University of Economics Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam)

Abstract

This paper is devoted to the study of evolution problems involving fractional flow and time and state dependent maximal monotone operator which is absolutely continuous in variation with respect to the Vladimirov’s pseudo distance. In a first part, we solve a second order problem and give an application to sweeping process. In a second part, we study a class of fractional order problem driven by a time and state dependent maximal monotone operator with a Lipschitz perturbation in a separable Hilbert space. In the last part, we establish a Filippov theorem and a relaxation variant for fractional differential inclusion in a separable Banach space. In every part, some variants and applications are presented.

Suggested Citation

  • Charles Castaing & Christiane Godet-Thobie & Le Xuan Truong, 2020. "Fractional Order of Evolution Inclusion Coupled with a Time and State Dependent Maximal Monotone Operator," Mathematics, MDPI, vol. 8(9), pages 1-30, August.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1395-:d:401701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/9/1395/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/9/1395/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hiai, Fumio & Umegaki, Hisaharu, 1977. "Integrals, conditional expectations, and martingales of multivalued functions," Journal of Multivariate Analysis, Elsevier, vol. 7(1), pages 149-182, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tuan Nguyen Dinh, 2023. "Regularity of Multipliers for Multiobjective Optimal Control Problems Governed by Evolution Equations," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 762-796, February.
    2. Guillermo Ayala & María Concepción López-Díaz & Miguel López-Díaz & Lucía Martínez-Costa, 2015. "Methods and Algorithms to Test the Hausdorff and Simplex Dispersion Orders with an R Package," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 661-675, September.
    3. Emmanuel Lepinette, 2020. "Random optimization on random sets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 159-173, February.
    4. Jinping Zhang & Keming Zhang, 2022. "Portfolio selection models based on interval-valued conditional value at risk (ICVaR) and empirical analysis," Papers 2201.02987, arXiv.org, revised Jul 2022.
    5. Lopez-Diaz, Miguel & Rodriguez-Muniz, Luis J., 2007. "Influence diagrams with super value nodes involving imprecise information," European Journal of Operational Research, Elsevier, vol. 179(1), pages 203-219, May.
    6. Ilya Molchanov & Anja Muhlemann, 2019. "Nonlinear expectations of random sets," Papers 1903.04901, arXiv.org.
    7. Ayala, Guillermo & López-Díaz, Miguel, 2009. "The simplex dispersion ordering and its application to the evaluation of human corneal endothelia," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1447-1464, August.
    8. Pascal Bianchi & Walid Hachem, 2016. "Dynamical Behavior of a Stochastic Forward–Backward Algorithm Using Random Monotone Operators," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 90-120, October.
    9. Rodríguez-Muñiz, Luis J. & López-Díaz, Miguel, 2007. "On the exchange of iterated expectations of random upper semicontinuous functions," Statistics & Probability Letters, Elsevier, vol. 77(16), pages 1628-1635, October.
    10. Jérôme Couvreux & Christian Hess, 1999. "A Lévy Type Martingale Convergence Theorem for Random Sets with Unbounded Values," Journal of Theoretical Probability, Springer, vol. 12(4), pages 933-969, October.
    11. Yan Sun & Guanghua Lian & Zudi Lu & Jennifer Loveland & Isaac Blackhurst, 2020. "Modeling the Variance of Return Intervals Toward Volatility Prediction," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 492-519, July.
    12. M. Guo & X. Xue & R. Li, 2004. "Controllability of Impulsive Evolution Inclusions with Nonlocal Conditions," Journal of Optimization Theory and Applications, Springer, vol. 120(2), pages 355-374, February.
    13. Wang, Rongming & Wang, Zhenpeng, 1997. "Set-Valued Stationary Processes," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 180-198, October.
    14. Castaing, Charles & Quang, Nguyen Van & Thuan, Nguyen Tran, 2012. "A new family of convex weakly compact valued random variables in Banach space and applications to laws of large numbers," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 84-95.
    15. Ezzaki, Fatima & Tahri, Khalid, 2019. "Representation theorem of set valued regular martingale: Application to the convergence of set valued martingale," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    16. Reza Ezzati & Shokrollah Ziari, 2012. "Approximation of fuzzy integrals using fuzzy bernstein polynomials," Fuzzy Information and Engineering, Springer, vol. 4(4), pages 415-423, December.
    17. Tito Homem-de-Mello, 2001. "Estimation of Derivatives of Nonsmooth Performance Measures in Regenerative Systems," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 741-768, November.
    18. Tourky, Rabee & Yannelis, Nicholas C., 2001. "Markets with Many More Agents than Commodities: Aumann's "Hidden" Assumption," Journal of Economic Theory, Elsevier, vol. 101(1), pages 189-221, November.
    19. Emmanuel Lepinette & Ilya Molchanov, 2017. "Conditional cores and conditional convex hulls of random sets," Papers 1711.10303, arXiv.org.
    20. Li Guan & Juan Wei & Hui Min & Junfei Zhang, 2021. "The Strong Laws of Large Numbers for Set-Valued Random Variables in Fuzzy Metric Space," Mathematics, MDPI, vol. 9(11), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1395-:d:401701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.