IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i8p1385-d400449.html
   My bibliography  Save this article

Fourier-Spectral Method for the Phase-Field Equations

Author

Listed:
  • Sungha Yoon

    (Department of Mathematics, Korea University, Seoul 02841, Korea)

  • Darae Jeong

    (Department of Mathematics, Kangwon National University, Gangwon-do 24341, Korea)

  • Chaeyoung Lee

    (Department of Mathematics, Korea University, Seoul 02841, Korea)

  • Hyundong Kim

    (Department of Mathematics, Korea University, Seoul 02841, Korea)

  • Sangkwon Kim

    (Department of Mathematics, Korea University, Seoul 02841, Korea)

  • Hyun Geun Lee

    (Department of Mathematics, Kwangwoon University, Seoul 01897, Korea)

  • Junseok Kim

    (Department of Mathematics, Korea University, Seoul 02841, Korea)

Abstract

In this paper, we review the Fourier-spectral method for some phase-field models: Allen–Cahn (AC), Cahn–Hilliard (CH), Swift–Hohenberg (SH), phase-field crystal (PFC), and molecular beam epitaxy (MBE) growth. These equations are very important parabolic partial differential equations and are applicable to many interesting scientific problems. The AC equation is a reaction-diffusion equation modeling anti-phase domain coarsening dynamics. The CH equation models phase segregation of binary mixtures. The SH equation is a popular model for generating patterns in spatially extended dissipative systems. A classical PFC model is originally derived to investigate the dynamics of atomic-scale crystal growth. An isotropic symmetry MBE growth model is originally devised as a method for directly growing high purity epitaxial thin film of molecular beams evaporating on a heated substrate. The Fourier-spectral method is highly accurate and simple to implement. We present a detailed description of the method and explain its connection to MATLAB usage so that the interested readers can use the Fourier-spectral method for their research needs without difficulties. Several standard computational tests are done to demonstrate the performance of the method. Furthermore, we provide the MATLAB codes implementation in the Appendix A.

Suggested Citation

  • Sungha Yoon & Darae Jeong & Chaeyoung Lee & Hyundong Kim & Sangkwon Kim & Hyun Geun Lee & Junseok Kim, 2020. "Fourier-Spectral Method for the Phase-Field Equations," Mathematics, MDPI, vol. 8(8), pages 1-36, August.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1385-:d:400449
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/8/1385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/8/1385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Montanelli, Hadrien & Bootland, Niall, 2020. "Solving periodic semilinear stiff PDEs in 1D, 2D and 3D with exponential integrators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 307-327.
    2. Junseok Kim & Seunggyu Lee & Yongho Choi & Seok-Min Lee & Darae Jeong, 2016. "Basic Principles and Practical Applications of the Cahn–Hilliard Equation," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-11, October.
    3. Dongsun Lee & Seunggyu Lee, 2019. "Image Segmentation Based on Modified Fractional Allen–Cahn Equation," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-6, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ham, Seokjun & Kim, Junseok, 2023. "Stability analysis for a maximum principle preserving explicit scheme of the Allen–Cahn equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 453-465.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ham, Seokjun & Kim, Junseok, 2023. "Stability analysis for a maximum principle preserving explicit scheme of the Allen–Cahn equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 453-465.
    2. Chaeyoung Lee & Darae Jeong & Junxiang Yang & Junseok Kim, 2020. "Nonlinear Multigrid Implementation for the Two-Dimensional Cahn–Hilliard Equation," Mathematics, MDPI, vol. 8(1), pages 1-23, January.
    3. Tan, Zhijun & Yang, Junxiang & Chen, Jianjun & Kim, Junseok, 2023. "An efficient time-dependent auxiliary variable approach for the three-phase conservative Allen–Cahn fluids," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    4. Costică Moroşanu & Silviu Pavăl, 2021. "Rigorous Mathematical Investigation of a Nonlocal and Nonlinear Second-Order Anisotropic Reaction-Diffusion Model: Applications on Image Segmentation," Mathematics, MDPI, vol. 9(1), pages 1-23, January.
    5. Tudor Barbu & Alain Miranville & Costică Moroşanu, 2024. "On a Local and Nonlocal Second-Order Boundary Value Problem with In-Homogeneous Cauchy–Neumann Boundary Conditions—Applications in Engineering and Industry," Mathematics, MDPI, vol. 12(13), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1385-:d:400449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.