IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v178y2020icp307-327.html
   My bibliography  Save this article

Solving periodic semilinear stiff PDEs in 1D, 2D and 3D with exponential integrators

Author

Listed:
  • Montanelli, Hadrien
  • Bootland, Niall

Abstract

Dozens of exponential integration formulas have been proposed for the high-accuracy solution of stiff PDEs such as the Allen–Cahn, Korteweg–de Vries and Ginzburg–Landau equations. We report the results of extensive comparisons in MATLAB and Chebfun of such formulas in 1D, 2D and 3D, focusing on fourth and higher order methods, and periodic semilinear stiff PDEs with constant coefficients. Our conclusion is that it is hard to do much better than one of the simplest of these formulas, the ETDRK4 scheme of Cox and Matthews.

Suggested Citation

  • Montanelli, Hadrien & Bootland, Niall, 2020. "Solving periodic semilinear stiff PDEs in 1D, 2D and 3D with exponential integrators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 307-327.
  • Handle: RePEc:eee:matcom:v:178:y:2020:i:c:p:307-327
    DOI: 10.1016/j.matcom.2020.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542030210X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ham, Seokjun & Kim, Junseok, 2023. "Stability analysis for a maximum principle preserving explicit scheme of the Allen–Cahn equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 453-465.
    2. Sungha Yoon & Darae Jeong & Chaeyoung Lee & Hyundong Kim & Sangkwon Kim & Hyun Geun Lee & Junseok Kim, 2020. "Fourier-Spectral Method for the Phase-Field Equations," Mathematics, MDPI, vol. 8(8), pages 1-36, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:178:y:2020:i:c:p:307-327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.