IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i8p1341-d397530.html
   My bibliography  Save this article

Tracking Control Strategy Using Filter-Based Approximation for the Unknown Control Direction Problem of Uncertain Pure-Feedback Nonlinear Systems

Author

Listed:
  • Yun Ho Choi

    (School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Korea)

  • Sung Jin Yoo

    (School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Korea)

Abstract

A filter-based recursive tracker design approach is presented for the problem of unknown control directions of pure-feedback systems with completely unknown non-affine nonlinearities. In the controller design procedure, the first-order filters for error surfaces, a control input, and state variables are employed to design nonadaptive virtual and actual control laws independent of adaptive function approximators. In addition, for the unknown control direction problem, the filtering signals are incorporated with Nussbaum functions. Different from existing adaptive approximation-based control schemes in the presence of unknown control directions, the proposed approach does not require any adaptive technique regardless of completely unknown nonlinear functions. Therefore, a simplified tracking structure can be constructed. Using the Lyapunov stability analysis, it is shown that the tracking error is reduced within an adjustable neighborhood of the origin while ensuring all the closed-loop signals are bounded.

Suggested Citation

  • Yun Ho Choi & Sung Jin Yoo, 2020. "Tracking Control Strategy Using Filter-Based Approximation for the Unknown Control Direction Problem of Uncertain Pure-Feedback Nonlinear Systems," Mathematics, MDPI, vol. 8(8), pages 1-17, August.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1341-:d:397530
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/8/1341/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/8/1341/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaohuan Lai & Haipeng Pan & Xinlong Zhao, 2019. "Adaptive Control for Pure-Feedback Nonlinear Systems Preceded by Asymmetric Hysteresis," Energies, MDPI, vol. 12(24), pages 1-13, December.
    2. Qing-Yuan Xu & Xiao-Dong Li, 2018. "Adaptive fuzzy ILC of nonlinear discrete-time systems with unknown dead zones and control directions," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(9), pages 1878-1894, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing-Yuan Xu & Wan-Ying He & Chuang-Tao Zheng & Peng Xu & Yun-Shan Wei & Kai Wan, 2022. "Adaptive Fuzzy Iterative Learning Control for Systems with Saturated Inputs and Unknown Control Directions," Mathematics, MDPI, vol. 10(19), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuxian Lun & Zhaoyi Lv & Xiaodong Lu & Ming Li, 2023. "ESN-Observer-Based Adaptive Stabilization Control for Delayed Nonlinear Systems with Unknown Control Gain," Mathematics, MDPI, vol. 11(13), pages 1-21, July.
    2. Truong, Hoai Vu Anh & Phan, Van Du & Tran, Duc Thien & Ahn, Kyoung Kwan, 2024. "A novel observer-based neural-network finite-time output control for high-order uncertain nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    3. Hua, Yu & Zhang, Tianping & Xia, Xiaonan, 2022. "Event-triggered adaptive neural command-filter-based dynamic surface control for state constrained nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    4. Yun-Shan Wei & Qing-Yuan Xu, 2018. "Iterative Learning Control for Linear Discrete-Time Systems with Randomly Variable Input Trail Length," Complexity, Hindawi, vol. 2018, pages 1-6, November.
    5. Li, Jiahao & Liu, Yu & Yu, Jinyong, 2022. "A new result on semi-synchronous event-triggered backstepping robust control for a class of non-Lipschitzian networked systems," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    6. Hu, Yifan & Liu, Wenhui, 2023. "Adaptive fuzzy dynamic surface control for nonstrict-feedback nonlinear state constrained systems with input dead-zone via event-triggered sampling," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    7. Qing-Yuan Xu & Wan-Ying He & Chuang-Tao Zheng & Peng Xu & Yun-Shan Wei & Kai Wan, 2022. "Adaptive Fuzzy Iterative Learning Control for Systems with Saturated Inputs and Unknown Control Directions," Mathematics, MDPI, vol. 10(19), pages 1-17, September.
    8. Wang, Sanxia & Xia, Jianwei & Wang, Xueliang & Yang, Wenjing & Wang, Linqi, 2021. "Adaptive neural networks control for MIMO nonlinear systems with unmeasured states and unmodeled dynamics," Applied Mathematics and Computation, Elsevier, vol. 408(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1341-:d:397530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.