IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i8p1227-d389940.html
   My bibliography  Save this article

Design of Manufacturing Lines Using the Reconfigurability Principle

Author

Listed:
  • Vladimír Vavrík

    (Department of Industrial Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia)

  • Milan Gregor

    (Department of Industrial Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia)

  • Patrik Grznár

    (Department of Industrial Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia)

  • Štefan Mozol

    (Department of Industrial Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia)

  • Marek Schickerle

    (Department of Industrial Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia)

  • Lukáš Ďurica

    (Institute of Competitiveness and Innovations, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia)

  • Martin Marschall

    (Institute of Competitiveness and Innovations, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia)

  • Tomáš Bielik

    (Institute of Competitiveness and Innovations, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia)

Abstract

Nowadays, many factories face changes on the global market and manufacturing is unpredictable. This fact creates a demand for developing new concepts of the factory which can represent a solution to these changes. This study presents a way for designing these new factory concepts, particularly a concept of the reconfigurable manufacturing lines. The methodology in this study uses characteristics of reconfigurable manufacturing systems for developing an algorithm for designing the basic factory layout. The methodology also combines classical math operations for designing the production layout with such approaches as simulation, cluster analysis, and LCS algorithm. This combination method with LCS algorithm and an entirely different approach to the design of the manufacturing line, has not yet been used. The accuracy of this methodology is then verified through the results of the complete algorithm containing these features. The main purpose of this study was to find new approaches to designing the reconfigurable factory layout. This article is presenting new ways that differ from the classical design method. The article suggests the new way is possible and the new systems also need new ways for designing and planning.

Suggested Citation

  • Vladimír Vavrík & Milan Gregor & Patrik Grznár & Štefan Mozol & Marek Schickerle & Lukáš Ďurica & Martin Marschall & Tomáš Bielik, 2020. "Design of Manufacturing Lines Using the Reconfigurability Principle," Mathematics, MDPI, vol. 8(8), pages 1-23, July.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1227-:d:389940
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/8/1227/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/8/1227/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    2. Scholl, Armin, 1995. "Balancing and sequencing of assembly lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9690, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Krajčovič & Gabriela Gabajová & Marián Matys & Beáta Furmannová & Ľuboslav Dulina, 2022. "Virtual Reality as an Immersive Teaching Aid to Enhance the Connection between Education and Practice," Sustainability, MDPI, vol. 14(15), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bautista, Joaquín & Pereira, Jordi, 2011. "Procedures for the Time and Space constrained Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 212(3), pages 473-481, August.
    2. Hager Triki & Ahmed Mellouli & Faouzi Masmoudi, 2017. "A multi-objective genetic algorithm for assembly line resource assignment and balancing problem of type 2 (ALRABP-2)," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 371-385, February.
    3. Rifat G. Ozdemir & Ugur Cinar & Eren Kalem & Onur Ozcelik, 2016. "Sub-assembly detection and line balancing using fuzzy goal programming approach," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 8(1), pages 65-86.
    4. M. H. Alavidoost & M. H. Fazel Zarandi & Mosahar Tarimoradi & Yaser Nemati, 2017. "Modified genetic algorithm for simple straight and U-shaped assembly line balancing with fuzzy processing times," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 313-336, February.
    5. Bukchin, Yossi & Raviv, Tal, 2018. "Constraint programming for solving various assembly line balancing problems," Omega, Elsevier, vol. 78(C), pages 57-68.
    6. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    7. Sternatz, Johannes, 2015. "The joint line balancing and material supply problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 304-318.
    8. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    9. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    10. Lopes, Thiago Cantos & Pastre, Giuliano Vidal & Michels, Adalberto Sato & Magatão, Leandro, 2020. "Flexible multi-manned assembly line balancing problem: Model, heuristic procedure, and lower bounds for line length minimization," Omega, Elsevier, vol. 95(C).
    11. Vilà, Mariona & Pereira, Jordi, 2013. "An enumeration procedure for the assembly line balancing problem based on branching by non-decreasing idle time," European Journal of Operational Research, Elsevier, vol. 229(1), pages 106-113.
    12. Klindworth, Hanne & Otto, Christian & Scholl, Armin, 2012. "On a learning precedence graph concept for the automotive industry," European Journal of Operational Research, Elsevier, vol. 217(2), pages 259-269.
    13. Otto, Alena & Scholl, Armin, 2011. "Incorporating ergonomic risks into assembly line balancing," European Journal of Operational Research, Elsevier, vol. 212(2), pages 277-286, July.
    14. Shibasaki, Rui S. & Rossi, André & Gurevsky, Evgeny, 2024. "A new upper bound based on Dantzig-Wolfe decomposition to maximize the stability radius of a simple assembly line under uncertainty," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1015-1030.
    15. Bautista, Joaquin & Pereira, Jordi, 2007. "Ant algorithms for a time and space constrained assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2016-2032, March.
    16. Bautista, Joaquín & Pereira, Jordi, 2009. "A dynamic programming based heuristic for the assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 787-794, May.
    17. Dolgui, A. & Guschinsky, N. & Levin, G. & Proth, J.-M., 2008. "Optimisation of multi-position machines and transfer lines," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1375-1389, March.
    18. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    19. Walter, Rico & Schulze, Philipp & Scholl, Armin, 2021. "SALSA: Combining branch-and-bound with dynamic programming to smoothen workloads in simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 295(3), pages 857-873.
    20. Moreira, Mayron César O. & Costa, Alysson M., 2013. "Hybrid heuristics for planning job rotation schedules in assembly lines with heterogeneous workers," International Journal of Production Economics, Elsevier, vol. 141(2), pages 552-560.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1227-:d:389940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.