IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i7p1154-d384308.html
   My bibliography  Save this article

Analytical and Approximate Solution for Solving the Vibration String Equation with a Fractional Derivative

Author

Listed:
  • Temirkhan S. Aleroev

    (Department of Applied Math, Moscow State University of Civil Engineering, 129337 Moscow, Russia)

  • Asmaa M. Elsayed

    (Department of Applied Math, Moscow State University of Civil Engineering, 129337 Moscow, Russia
    Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt)

Abstract

This paper is proposed for solving a partial differential equation of second order with a fractional derivative with respect to time (the vibration string equation), where the fractional derivative order is in the range from zero to two. We propose a numerical solution that is based on the Laplace transform method with the homotopy perturbation method. The method of the separation of variables (the Fourier method) is constructed for the analytic solution. The derived solutions are represented by Mittag–LefLeffler type functions. Orthogonality and convergence of the solution are discussed. Finally, we present an example to illustrate the methods.

Suggested Citation

  • Temirkhan S. Aleroev & Asmaa M. Elsayed, 2020. "Analytical and Approximate Solution for Solving the Vibration String Equation with a Fractional Derivative," Mathematics, MDPI, vol. 8(7), pages 1-9, July.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1154-:d:384308
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/7/1154/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/7/1154/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saxena, R.K. & Mathai, A.M. & Haubold, H.J., 2004. "On generalized fractional kinetic equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(3), pages 657-664.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor N. Orlov & Asmaa M. Elsayed & Elsayed I. Mahmoud, 2022. "Two Linearized Schemes for One-Dimensional Time and Space Fractional Differential Equations," Mathematics, MDPI, vol. 10(19), pages 1-16, October.
    2. Elsayed I. Mahmoud & Temirkhan S. Aleroev, 2022. "Boundary Value Problem of Space-Time Fractional Advection Diffusion Equation," Mathematics, MDPI, vol. 10(17), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mollapourasl, R. & Ostadi, A., 2015. "On solution of functional integral equation of fractional order," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 631-643.
    2. Kottakkaran Sooppy Nisar, 2019. "Fractional Integrations of a Generalized Mittag-Leffler Type Function and Its Application," Mathematics, MDPI, vol. 7(12), pages 1-13, December.
    3. Mehar Chand & Hanaa Hachimi & Rekha Rani, 2018. "New Extension of Beta Function and Its Applications," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2018, pages 1-25, December.
    4. Mathai, A.M. & Haubold, H.J., 2007. "Pathway model, superstatistics, Tsallis statistics, and a generalized measure of entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(1), pages 110-122.
    5. Buyukkilic, F. & Ok Bayrakdar, Z. & Demirhan, D., 2015. "Investigation of cumulative growth process via Fibonacci method and fractional calculus," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 237-244.
    6. Mohammed Z. Alqarni & Mohamed Abdalla, 2023. "Novel Kinds of Fractional λ –Kinetic Equations Involving the Generalized Degenerate Hypergeometric Functions and Their Solutions Using the Pathway-Type Integral," Mathematics, MDPI, vol. 11(19), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1154-:d:384308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.