IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i7p1105-d380668.html
   My bibliography  Save this article

Estimating the Strain-Rate-Dependent Parameters of the Johnson-Cook Material Model Using Optimisation Algorithms Combined with a Response Surface

Author

Listed:
  • Andrej Škrlec

    (Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia)

  • Jernej Klemenc

    (Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia)

Abstract

Under conditions where a product is subjected to extreme mechanical loading over a very short time period, the strain rate has considerable influence on the behaviour of the product’s material. To simulate the behaviour of the material accurately under these loading conditions, the appropriate strain-rate parameters for the selected material model should be used. The aim of this paper is to present a quick method for easily determining the appropriate strain-rate-dependent parameter values of the selected material model. The optimisation procedure described in the article combines the design-of-experiment (DoE) technique, finite-element simulations, modelling a response surface and an evolutionary algorithm. First, a non-standard dynamic experiment was designed to study the behaviour of thin, flat, metal sheets during an impact. The experimental data from this dynamic and the conventional tensile experiments for mild steel were the basis for the determination of the Johnson-Cook material model parameters. The paper provides a comparison of two optimisation processes with different DoE techniques and with three different optimisation algorithms (one traditional and two metaheuristic). The performances of the presented method are compared, and the engineering applicability of the results is discussed. The identified parameter values, which were estimated with the presented procedure, are very similar to those from the literature. The paper shows how the application of a properly designed plan of simulations can significantly reduce the simulation time, with only a minor influence on the estimated parameters. Furthermore, it can be concluded that in some cases the traditional optimisation method is as good as the two metaheuristic methods. Finally, it was proven that experiments with different strain rates must be carried out when estimating the corresponding material parameters.

Suggested Citation

  • Andrej Škrlec & Jernej Klemenc, 2020. "Estimating the Strain-Rate-Dependent Parameters of the Johnson-Cook Material Model Using Optimisation Algorithms Combined with a Response Surface," Mathematics, MDPI, vol. 8(7), pages 1-17, July.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1105-:d:380668
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/7/1105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/7/1105/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marko Jesenik & Marjan Mernik & Mladen Trlep, 2020. "Determination of a Hysteresis Model Parameters with the Use of Different Evolutionary Methods for an Innovative Hysteresis Model," Mathematics, MDPI, vol. 8(2), pages 1-27, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lotfi Ben Said & Hamdi Hentati & Taoufik Kamoun & Mounir Trabelsi, 2023. "Experimental and Numerical Investigation of Folding Process—Prediction of Folding Force and Springback," Mathematics, MDPI, vol. 11(19), pages 1-18, September.
    2. Lotfi Ben Said & Alia Khanfir Chabchoub & Mondher Wali, 2023. "Mathematical Model Describing the Hardening and Failure Behaviour of Aluminium Alloys: Application in Metal Shear Cutting Process," Mathematics, MDPI, vol. 11(9), pages 1-18, April.
    3. Lotfi Ben Said & Mondher Wali, 2022. "Accuracy of Variational Formulation to Model the Thermomechanical Problem and to Predict Failure in Metallic Materials," Mathematics, MDPI, vol. 10(19), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gustav Mörée & Mats Leijon, 2023. "Review of Hysteresis Models for Magnetic Materials," Energies, MDPI, vol. 16(9), pages 1-66, May.
    2. Jakob Vizjak & Anton Hamler & Marko Jesenik, 2023. "Design and Optimization of a Spherical Magnetorheological Actuator," Mathematics, MDPI, vol. 11(19), pages 1-23, September.
    3. Ermin Rahmanović & Martin Petrun, 2024. "Analysis of Higher-Order Bézier Curves for Approximation of the Static Magnetic Properties of NO Electrical Steels," Mathematics, MDPI, vol. 12(3), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1105-:d:380668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.