IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p1980-d1129970.html
   My bibliography  Save this article

Mathematical Model Describing the Hardening and Failure Behaviour of Aluminium Alloys: Application in Metal Shear Cutting Process

Author

Listed:
  • Lotfi Ben Said

    (Department of Mechanical Engineering, College of Engineering, University of Ha’il, Ha’il City 2440, Saudi Arabia
    Laboratory of Electrochemistry and Environment (LEE), National Engineering School of Sfax, University of Sfax, Sfax 5080, Tunisia)

  • Alia Khanfir Chabchoub

    (Higher Institute of Technological Studies of Sousse, Sousse 4023, Tunisia)

  • Mondher Wali

    (Laboratory of Electrochemistry and Environment (LEE), National Engineering School of Sfax, University of Sfax, Sfax 5080, Tunisia)

Abstract

Recent research has focused on sheet shear cutting operations. However, little research has been conducted on bar shear cutting. The main objective of the present investigation is to study bar shear cutting with numerical and experimental analysis. Bar shear cutting is an important operation because it precedes bulk metalworking processes for instance machining, extrusion and hot forging. In comparison to sheet shear cutting, bar shear cutting needs thermomechanical modelling. The variational formulation of the model is presented to predict damage mechanics in the bar shear cutting of aluminium alloys. Coupled thermomechanical modelling is required to analyse the mechanical behaviour of bulk workpieces, in which the combined effect of strain and temperature fields is considered in the shear cutting process. For this purpose, modified hardening and damage Johnson–Cook laws are developed. Numerical results for sheet and bar shear cutting operations are presented. The comparison between numerical and experimental results of shearing force/tool displacement during sheet and bar shear cutting operations proves that the use of a thermomechanical model in the case of the bar shear cutting process is crucial to accurately predict the mechanical behaviour of aluminium alloys. The analysis of the temperature field in the metal bar shows that the temperature can reach T = 388 °C on the sheared surface. The current model accurately predicts the shear cutting process and shows a strong correlation with experimental tests. Two values of clearance ( c 1 = 0.2 mm) and ( c 2 = 1.2 mm) are assumed for modeling the bar shear cutting operation. It is observed that for the low shear clearance, the burr is small, the quality of the sheared surface is better, and the fractured zone is negligible.

Suggested Citation

  • Lotfi Ben Said & Alia Khanfir Chabchoub & Mondher Wali, 2023. "Mathematical Model Describing the Hardening and Failure Behaviour of Aluminium Alloys: Application in Metal Shear Cutting Process," Mathematics, MDPI, vol. 11(9), pages 1-18, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:1980-:d:1129970
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/1980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/1980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrej Škrlec & Jernej Klemenc, 2020. "Estimating the Strain-Rate-Dependent Parameters of the Johnson-Cook Material Model Using Optimisation Algorithms Combined with a Response Surface," Mathematics, MDPI, vol. 8(7), pages 1-17, July.
    2. Lotfi Ben Said & Mondher Wali, 2022. "Accuracy of Variational Formulation to Model the Thermomechanical Problem and to Predict Failure in Metallic Materials," Mathematics, MDPI, vol. 10(19), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lotfi Ben Said & Hamdi Hentati & Taoufik Kamoun & Mounir Trabelsi, 2023. "Experimental and Numerical Investigation of Folding Process—Prediction of Folding Force and Springback," Mathematics, MDPI, vol. 11(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lotfi Ben Said & Hamdi Hentati & Taoufik Kamoun & Mounir Trabelsi, 2023. "Experimental and Numerical Investigation of Folding Process—Prediction of Folding Force and Springback," Mathematics, MDPI, vol. 11(19), pages 1-18, September.
    2. Elouni Chebbi & Lotfi Ben Said & Badreddine Ayadi & Fakhreddine Dammak, 2023. "A Continuum Damage-Based Anisotropic Hyperelastic Fatigue Model for Short Glass Fiber Reinforced Polyamide 66," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    3. Lotfi Ben Said & Mondher Wali, 2022. "Accuracy of Variational Formulation to Model the Thermomechanical Problem and to Predict Failure in Metallic Materials," Mathematics, MDPI, vol. 10(19), pages 1-23, September.
    4. Lotfi Ben Said & Marwa Allouch & Mondher Wali & Fakhreddine Dammak, 2022. "Numerical Formulation of Anisotropic Elastoplastic Behavior Coupled with Damage Model in Forming Processes," Mathematics, MDPI, vol. 11(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:1980-:d:1129970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.