IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p991-d372641.html
   My bibliography  Save this article

Mean Shift versus Variance Inflation Approach for Outlier Detection—A Comparative Study

Author

Listed:
  • Rüdiger Lehmann

    (Faculty of Spatial Information, University of Applied Sciences Dresden, 01069 Dresden, Germany)

  • Michael Lösler

    (Faculty 1: Architecture—Civil Engineering—Geomatics, Frankfurt University of Applied Sciences, 60318 Frankfurt, Germany)

  • Frank Neitzel

    (Technische Universität Berlin, Institute of Geodesy and Geoinformation Science, 10623 Berlin, Germany)

Abstract

Outlier detection is one of the most important tasks in the analysis of measured quantities to ensure reliable results. In recent years, a variety of multi-sensor platforms has become available, which allow autonomous and continuous acquisition of large quantities of heterogeneous observations. Because the probability that such data sets contain outliers increases with the quantity of measured values, powerful methods are required to identify contaminated observations. In geodesy, the mean shift model (MS) is one of the most commonly used approaches for outlier detection. In addition to the MS model, there is an alternative approach with the model of variance inflation (VI). In this investigation the VI approach is derived in detail, truly maximizing the likelihood functions and examined for outlier detection of one or multiple outliers. In general, the variance inflation approach is non-linear, even if the null model is linear. Thus, an analytical solution does usually not exist, except in the case of repeated measurements. The test statistic is derived from the likelihood ratio (LR) of the models. The VI approach is compared with the MS model in terms of statistical power, identifiability of actual outliers, and numerical effort. The main purpose of this paper is to examine the performance of both approaches in order to derive recommendations for the practical application of outlier detection.

Suggested Citation

  • Rüdiger Lehmann & Michael Lösler & Frank Neitzel, 2020. "Mean Shift versus Variance Inflation Approach for Outlier Detection—A Comparative Study," Mathematics, MDPI, vol. 8(6), pages 1-21, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:991-:d:372641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/991/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/991/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gumedze, Freedom N. & Welham, Sue J. & Gogel, Beverley J. & Thompson, Robin, 2010. "A variance shift model for detection of outliers in the linear mixed model," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2128-2144, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Mohammed Baba & Habshah Midi & Nur Haizum Abd Rahman, 2022. "Spatial Outlier Accommodation Using a Spatial Variance Shift Outlier Model," Mathematics, MDPI, vol. 10(17), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pinho, Luis Gustavo B. & Nobre, Juvêncio S. & Singer, Julio M., 2015. "Cook’s distance for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 126-136.
    2. Julio M. Singer & Francisco M.M. Rocha & Juvêncio S. Nobre, 2017. "Graphical Tools for Detecting Departures from Linear Mixed Model Assumptions and Some Remedial Measures," International Statistical Review, International Statistical Institute, vol. 85(2), pages 290-324, August.
    3. Xiaowen Dai & Libin Jin & Anqi Shi & Lei Shi, 2016. "Outlier detection and accommodation in general spatial models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(3), pages 453-475, August.
    4. Ali Mohammed Baba & Habshah Midi & Nur Haizum Abd Rahman, 2022. "Spatial Outlier Accommodation Using a Spatial Variance Shift Outlier Model," Mathematics, MDPI, vol. 10(17), pages 1-19, September.
    5. Schützenmeister, André & Piepho, Hans-Peter, 2012. "Residual analysis of linear mixed models using a simulation approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1405-1416.
    6. Emi Tanaka, 2020. "Simple outlier detection for a multi‐environmental field trial," Biometrics, The International Biometric Society, vol. 76(4), pages 1374-1382, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:991-:d:372641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.