IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i4p1374-1382.html
   My bibliography  Save this article

Simple outlier detection for a multi‐environmental field trial

Author

Listed:
  • Emi Tanaka

Abstract

The aim of plant breeding trials is often to identify crop variety that are well adapt to target environments. These varieties are identified through genomic prediction from the analysis of multi‐environmental field trial (MET) using linear mixed models. The occurrence of outliers in MET is common and known to adversely impact the accuracy of genomic prediction yet the detection of outliers are often neglected. A number of reasons stand for this—first, complex data such as a MET give rise to distinct levels of residuals (eg, at a trial level or individual observation level). This complexity offers additional challenges for an outlier detection method. Second, many linear mixed model software packages that cater for complex variance structures needed in the analysis of MET are not well streamlined for diagnostics by practitioners. We demonstrate outlier detection methods that are simple to implement in any linear mixed model software packages and computationally fast. Although these methods are not optimal methods in outlier detection, they offer practical value for ease of application in the analysis pipeline of regularly collected data. These are demonstrated using simulation based on two real bread wheat yield METs. In particular, models that consider analysis of yield trials either independently or jointly (thus borrowing strength across trials) are considered. Case studies are presented to highlight benefit of joint analysis for outlier detection.

Suggested Citation

  • Emi Tanaka, 2020. "Simple outlier detection for a multi‐environmental field trial," Biometrics, The International Biometric Society, vol. 76(4), pages 1374-1382, December.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:4:p:1374-1382
    DOI: 10.1111/biom.13216
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13216
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gilmour, Arthur & Cullis, Brian & Welham, Sue & Gogel, Beverley & Thompson, Robin, 2004. "An efficient computing strategy for prediction in mixed linear models," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 571-586, January.
    2. Gumedze, Freedom N. & Welham, Sue J. & Gogel, Beverley J. & Thompson, Robin, 2010. "A variance shift model for detection of outliers in the linear mixed model," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2128-2144, September.
    3. Schützenmeister, André & Piepho, Hans-Peter, 2012. "Residual analysis of linear mixed models using a simulation approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1405-1416.
    4. G. N. Wilkinson & C. E. Rogers, 1973. "Symbolic Description of Factorial Models for Analysis of Variance," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 22(3), pages 392-399, November.
    5. Koller, Manuel, 2016. "robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 75(i06).
    6. Alison Smith & Brian Cullis & Robin Thompson, 2001. "Analyzing Variety by Environment Data Using Multiplicative Mixed Models and Adjustments for Spatial Field Trend," Biometrics, The International Biometric Society, vol. 57(4), pages 1138-1147, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian R. Cullis & Alison B. Smith & Nicole A. Cocks & David G. Butler, 2020. "The Design of Early-Stage Plant Breeding Trials Using Genetic Relatedness," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 553-578, December.
    2. Yu, Dalei & Ding, Chang & He, Na & Wang, Ruiwu & Zhou, Xiaohua & Shi, Lei, 2019. "Robust estimation and confidence interval in meta-regression models," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 93-118.
    3. repec:jss:jstsof:34:i01 is not listed on IDEAS
    4. Payne, Roger W., 1998. "Design keys, pseudo-factors and general balance," Computational Statistics & Data Analysis, Elsevier, vol. 29(2), pages 217-229, December.
    5. repec:jss:jstsof:14:i09 is not listed on IDEAS
    6. Pinho, Luis Gustavo B. & Nobre, Juvêncio S. & Singer, Julio M., 2015. "Cook’s distance for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 126-136.
    7. Francis K. C. Hui & Samuel Müller & Alan H. Welsh, 2021. "Random Effects Misspecification Can Have Severe Consequences for Random Effects Inference in Linear Mixed Models," International Statistical Review, International Statistical Institute, vol. 89(1), pages 186-206, April.
    8. Zeileis, Achim & Kleiber, Christian & Kramer, Walter & Hornik, Kurt, 2003. "Testing and dating of structural changes in practice," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 109-123, October.
    9. Bent Nielsen, 2014. "Deviance analysis of age-period-cohort models," Economics Papers 2014-W03, Economics Group, Nuffield College, University of Oxford.
    10. Emil Exenberger & Michaela Kav?áková, 2020. "Evaluation of financial health of companies through data envelopment analysis: Selection of variables for the DEA model in R," Proceedings of Economics and Finance Conferences 10913067, International Institute of Social and Economic Sciences.
    11. Patterson, Andrew C., 2024. "Civil service organization as a political determinant of health: Analyzing relationships between merit-based hiring, corruption, and population health," Social Science & Medicine, Elsevier, vol. 348(C).
    12. Özgür Asar & David Bolin & Peter J. Diggle & Jonas Wallin, 2020. "Linear mixed effects models for non‐Gaussian continuous repeated measurement data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1015-1065, November.
    13. Paolo Girardi & Silvia Lanfranchi & Libera Ylenia Mastromatteo & Massimo Stafoggia & Sara Scrimin, 2021. "Association between Exposure to Particulate Matter during Pregnancy and Multidimensional Development in School-Age Children: A Cross-Sectional Study in Italy," IJERPH, MDPI, vol. 18(21), pages 1-13, November.
    14. Christian Kleiber & Achim Zeileis, 2005. "Validating multiple structural change models-a case study," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(5), pages 685-690.
    15. T. Caliński & S. Czajka & Z. Kaczmarek & P. Krajewski & W. Pilarczyk, 2005. "Analyzing Multi-environment Variety Trials Using Randomization-Derived Mixed Models," Biometrics, The International Biometric Society, vol. 61(2), pages 448-455, June.
    16. Yuxiao Chen & Densil Cabrera & Manuj Yadav, 2023. "Finding the Seat With the Best View: Stage-View Preference for Orchestra," SAGE Open, , vol. 13(2), pages 21582440231, June.
    17. El-Bassiouni, M. Y. & Charif, H. A., 2004. "Testing a null variance ratio in mixed models with zero degrees of freedom for error," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 707-719, July.
    18. Holger Zimmerman & Deryk Tolman & Martin Reichard, 2023. "Low incidence of cannibalism among brood parasitic cuckoo catfish embryos," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(4), pages 521-527.
    19. Ali Mohammed Baba & Habshah Midi & Nur Haizum Abd Rahman, 2022. "Spatial Outlier Accommodation Using a Spatial Variance Shift Outlier Model," Mathematics, MDPI, vol. 10(17), pages 1-19, September.
    20. Monica E. Ellwood-Lowe & Susan Whitfield-Gabrieli & Silvia A. Bunge, 2021. "Brain network coupling associated with cognitive performance varies as a function of a child’s environment in the ABCD study," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    21. Gambin, Brenda L. & Coyos, Tomás & Di Mauro, Guido & Borrás, Lucas & Garibaldi, Lucas A., 2016. "Exploring genotype, management, and environmental variables influencing grain yield of late-sown maize in central Argentina," Agricultural Systems, Elsevier, vol. 146(C), pages 11-19.
    22. Rüdiger Lehmann & Michael Lösler & Frank Neitzel, 2020. "Mean Shift versus Variance Inflation Approach for Outlier Detection—A Comparative Study," Mathematics, MDPI, vol. 8(6), pages 1-21, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:4:p:1374-1382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.