Construction of Different Types Analytic Solutions for the Zhiber-Shabat Equation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ali, Karmina K. & Yilmazer, Resat & Yokus, Asıf & Bulut, Hasan, 2020. "Analytical solutions for the (3+1)-dimensional nonlinear extended quantum Zakharov–Kuznetsov equation in plasma physics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
- Ahmad, Hijaz & Seadawy, Aly R. & Khan, Tufail A., 2020. "Study on numerical solution of dispersive water wave phenomena by using a reliable modification of variational iteration algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 13-23.
- Kaya, Doǧan & Yokus, Asif, 2002. "A numerical comparison of partial solutions in the decomposition method for linear and nonlinear partial differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 60(6), pages 507-512.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Elgazery, Nasser S., 2008. "Numerical solution for the Falkner–Skan equation," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 738-746.
- Ali, Karmina K. & Yokus, Asıf & Seadawy, Aly R. & Yilmazer, Resat, 2022. "The ion sound and Langmuir waves dynamical system via computational modified generalized exponential rational function," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
- Fardi, Mojtaba & Khan, Yasir, 2021. "A novel finite difference-spectral method for fractal mobile/immobiletransport model based on Caputo–Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
- Momani, Shaher, 2006. "Non-perturbative analytical solutions of the space- and time-fractional Burgers equations," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 930-937.
- Tomar, Saurabh & Singh, Mehakpreet & Vajravelu, Kuppalapalle & Ramos, Higinio, 2023. "Simplifying the variational iteration method: A new approach to obtain the Lagrange multiplier," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 640-644.
More about this item
Keywords
(1/ G ′)-expansion method; the Zhiber-Shabat equation; ( G ′/ G ; 1/ G )-expansion method; traveling wave solutions; exact solutions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:908-:d:366966. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.