IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i5p790-d357708.html
   My bibliography  Save this article

Risk Management for Bonds with Embedded Options

Author

Listed:
  • Antonio Díaz

    (Department of Economics and Finance, University of Castilla-La Mancha, 02071 Albacete, Spain)

  • Marta Tolentino

    (Department of Economics and Finance, University of Castilla-La Mancha, 13003 Ciudad Real, Spain)

Abstract

This paper examines the behavior of the interest rate risk management measures for bonds with embedded options and studies factors it depends on. The contingent option exercise implies that both the pricing and the risk management of bonds requires modelling future interest rates. We use the Ho and Lee (HL) and Black, Derman, and Toy (BDT) consistent interest rate models. In addition, specific interest rate measures that consider the contingent cash-flow structure of these coupon-bearing bonds must be computed. In our empirical analysis, we obtained evidence that effective duration and effective convexity depend primarily on the level of the forward interest rate and volatility. In addition, the higher the interest rate change and the lower the volatility, the greater the differences in pricing of these bonds when using the HL or BDT models.

Suggested Citation

  • Antonio Díaz & Marta Tolentino, 2020. "Risk Management for Bonds with Embedded Options," Mathematics, MDPI, vol. 8(5), pages 1-12, May.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:790-:d:357708
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/5/790/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/5/790/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    3. Annaert, Jan & Claes, Anouk G.P. & De Ceuster, Marc J.K. & Zhang, Hairui, 2015. "Estimating the long rate and its volatility," Economics Letters, Elsevier, vol. 129(C), pages 100-102.
    4. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paoyu Huang & Chih-Te Yang & Yuhsin Chen & Yensen Ni, 2023. "A New Look on the Profitability of Fixed and Indexed Mortgage Products," Mathematics, MDPI, vol. 11(17), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    2. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    3. Cheikh Mbaye & Frédéric Vrins, 2022. "Affine term structure models: A time‐change approach with perfect fit to market curves," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 678-724, April.
    4. Yu, Wei-Choun & Zivot, Eric, 2011. "Forecasting the term structures of Treasury and corporate yields using dynamic Nelson-Siegel models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 579-591.
    5. Gonzalo Cortazar & Eduardo S. Schwartz & Lorenzo F. Naranjo, 2007. "Term-structure estimation in markets with infrequent trading," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(4), pages 353-369.
    6. Molenaars, Tomas K. & Reinerink, Nick H. & Hemminga, Marcus A., 2013. "Forecasting the yield curve - Forecast performance of the dynamic Nelson-Siegel model from 1971 to 2008," MPRA Paper 61862, University Library of Munich, Germany.
    7. Francisco Venegas Martínez, 2001. "Opciones, cobertura y procesos de difusión con saltos: Una aplicación a los títulos de Gcarso," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 16(2), pages 203-226.
    8. Ubukata, M. & Fukushige, M., 2009. "Estimation and inference in the yield curve model with an instantaneous error term," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2938-2946.
    9. Alfaro, Rodrigo & Becerra, Juan Sebastian & Sagner, Andres, 2010. "Estimación de la estructura de tasas utilizando el modelo Dinámico Nelson Siegel: resultados para Chile y EEUU [The Dynamic Nelson-Siegel model: empirical results for Chile and US]," MPRA Paper 25912, University Library of Munich, Germany, revised 23 Jun 2010.
    10. Arismendi-Zambrano, Juan & Belitsky, Vladimir & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2022. "The implications of dependence, tail dependence, and bounds’ measures for counterparty credit risk pricing," Journal of Financial Stability, Elsevier, vol. 58(C).
    11. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, September.
    12. repec:jss:jstsof:36:i01 is not listed on IDEAS
    13. J. C. Arismendi-Zambrano & Vladimir Belitsky & Vinicius Amorim Sobreiro & Herbert Kimura, 2020. "The Implications of Tail Dependency Measures for Counterparty Credit Risk Pricing," Economics Department Working Paper Series n306-20.pdf, Department of Economics, National University of Ireland - Maynooth.
    14. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Modelos de la estructura de plazos de las tasas de interés: Revisión, tendencias y perspectivas," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    15. Björk, Tomas, 2000. "A Geometric View of Interest Rate Theory," SSE/EFI Working Paper Series in Economics and Finance 419, Stockholm School of Economics, revised 21 Dec 2000.
    16. Sebastián A. Rey, 2016. "Theory of long-term interest rates," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-18, September.
    17. Muhammad Yasir & Sitara Afzal & Khalid Latif & Ghulam Mujtaba Chaudhary & Nazish Yameen Malik & Farhan Shahzad & Oh-young Song, 2020. "An Efficient Deep Learning Based Model to Predict Interest Rate Using Twitter Sentiment," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    18. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    19. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    20. Wei-Choun Yu & Donald M. Salyards, 2009. "Parsimonious modeling and forecasting of corporate yield curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 73-88.
    21. Nagy, Krisztina, 2020. "Term structure estimation with missing data: Application for emerging markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 75(C), pages 347-360.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:790-:d:357708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.