IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p546-d342508.html
   My bibliography  Save this article

Hybridization of Multi-Objective Deterministic Particle Swarm with Derivative-Free Local Searches

Author

Listed:
  • Riccardo Pellegrini

    (CNR-INM, National Research Council—Institute of Marine Engineering, 00139 Rome, Italy)

  • Andrea Serani

    (CNR-INM, National Research Council—Institute of Marine Engineering, 00139 Rome, Italy)

  • Giampaolo Liuzzi

    (CNR-IASI, National Research Council—Institute for Systems Analysis and Computer Science, 00185 Rome, Italy)

  • Francesco Rinaldi

    (Department of Mathematics, University of Padua, 35121 Padua, Italy)

  • Stefano Lucidi

    (Department of Computer, Control, and Management Engineering “A. Ruberti”, Sapienza University, 00185 Rome, Italy)

  • Matteo Diez

    (CNR-INM, National Research Council—Institute of Marine Engineering, 00139 Rome, Italy)

Abstract

The paper presents a multi-objective derivative-free and deterministic global/local hybrid algorithm for the efficient and effective solution of simulation-based design optimization (SBDO) problems. The objective is to show how the hybridization of two multi-objective derivative-free global and local algorithms achieves better performance than the separate use of the two algorithms in solving specific SBDO problems for hull-form design. The proposed method belongs to the class of memetic algorithms, where the global exploration capability of multi-objective deterministic particle swarm optimization is enriched by exploiting the local search accuracy of a derivative-free multi-objective line-search method. To the authors best knowledge, studies are still limited on memetic, multi-objective, deterministic, derivative-free, and evolutionary algorithms for an effective and efficient solution of SBDO for hull-form design. The proposed formulation manages global and local searches based on the hypervolume metric. The hybridization scheme uses two parameters to control the local search activation and the number of function calls used by the local algorithm. The most promising values of these parameters were identified using forty analytical tests representative of the SBDO problem of interest. The resulting hybrid algorithm was finally applied to two SBDO problems for hull-form design. For both analytical tests and SBDO problems, the hybrid method achieves better performance than its global and local counterparts.

Suggested Citation

  • Riccardo Pellegrini & Andrea Serani & Giampaolo Liuzzi & Francesco Rinaldi & Stefano Lucidi & Matteo Diez, 2020. "Hybridization of Multi-Objective Deterministic Particle Swarm with Derivative-Free Local Searches," Mathematics, MDPI, vol. 8(4), pages 1-20, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:546-:d:342508
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, December.
    2. E. F. Campana & M. Diez & G. Liuzzi & S. Lucidi & R. Pellegrini & V. Piccialli & F. Rinaldi & A. Serani, 2018. "A multi-objective DIRECT algorithm for ship hull optimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 53-72, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yichen Lu & Chao Yang & Jun Yang, 2022. "A multi-objective humanitarian pickup and delivery vehicle routing problem with drones," Annals of Operations Research, Springer, vol. 319(1), pages 291-353, December.
    2. Wu, Weitiao & Lin, Yue & Liu, Ronghui & Jin, Wenzhou, 2022. "The multi-depot electric vehicle scheduling problem with power grid characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 322-347.
    3. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    4. Stelios Rozakis & Athanasios Kampas, 2022. "An interactive multi-criteria approach to admit new members in international environmental agreements," Operational Research, Springer, vol. 22(4), pages 3461-3487, September.
    5. Chambers, Robert G., 2024. "Numeraire choice, shadow profit, and inefficiency measurement," European Journal of Operational Research, Elsevier, vol. 319(2), pages 658-668.
    6. Manuel V. C. Vieira & Margarida Carvalho, 2023. "Lexicographic optimization for the multi-container loading problem with open dimensions for a shoe manufacturer," 4OR, Springer, vol. 21(3), pages 491-512, September.
    7. Petr Iakovlevitch Ekel & Matheus Pereira Libório & Laura Cozzi Ribeiro & Mateus Alberto Dorna de Oliveira Ferreira & Joel Gomes Pereira Junior, 2024. "Multi-Criteria Decision under Uncertainty as Applied to Resource Allocation and Its Computing Implementation," Mathematics, MDPI, vol. 12(6), pages 1-20, March.
    8. Yeudiel Lara Moreno & Carlos Ignacio Hernández Castellanos, 2024. "A Hierarchical Approach to a Tri-Objective Portfolio Optimization Problem Considering an ESG Index," Mathematics, MDPI, vol. 12(19), pages 1-16, October.
    9. Bennet Gebken & Sebastian Peitz, 2021. "Inverse multiobjective optimization: Inferring decision criteria from data," Journal of Global Optimization, Springer, vol. 80(1), pages 3-29, May.
    10. Fernando García-Castaño & Miguel Ángel Melguizo-Padial & G. Parzanese, 2023. "Sublinear scalarizations for proper and approximate proper efficient points in nonconvex vector optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(3), pages 367-382, June.
    11. Min Feng & Shengjie Li & Jie Wang, 2022. "On Tucker-Type Alternative Theorems and Necessary Optimality Conditions for Nonsmooth Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 480-503, November.
    12. Abdelaziz, Fouad Ben & Maddah, Bacel & Flamand, Tülay & Azar, Jimmy, 2024. "Store-Wide space planning balancing impulse and convenience," European Journal of Operational Research, Elsevier, vol. 312(1), pages 211-226.
    13. Doğan, Ilgın & Lokman, Banu & Köksalan, Murat, 2022. "Representing the nondominated set in multi-objective mixed-integer programs," European Journal of Operational Research, Elsevier, vol. 296(3), pages 804-818.
    14. Brouer, Berit D. & Dirksen, Jakob & Pisinger, David & Plum, Christian E.M. & Vaaben, Bo, 2013. "The Vessel Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in liner shipping," European Journal of Operational Research, Elsevier, vol. 224(2), pages 362-374.
    15. Lourdes Uribe & Johan M Bogoya & Andrés Vargas & Adriana Lara & Günter Rudolph & Oliver Schütze, 2020. "A Set Based Newton Method for the Averaged Hausdorff Distance for Multi-Objective Reference Set Problems," Mathematics, MDPI, vol. 8(10), pages 1-29, October.
    16. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
    17. Steuer, Ralph E. & Utz, Sebastian, 2023. "Non-contour efficient fronts for identifying most preferred portfolios in sustainability investing," European Journal of Operational Research, Elsevier, vol. 306(2), pages 742-753.
    18. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    19. Andries Steenkamp, 2023. "Convex scalarizations of the mean-variance-skewness-kurtosis problem in portfolio selection," Papers 2302.10573, arXiv.org.
    20. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:546-:d:342508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.