IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i1p67-d304629.html
   My bibliography  Save this article

Second-Order Parametric Free Dualities for Complex Minimax Fractional Programming

Author

Listed:
  • Tone-Yau Huang

    (Department of Applied Mathematics, Feng-Chia University, Tai-Chung 40724, Taiwan)

Abstract

In this paper, we will consider a minimax fractional programming in complex spaces. Since a duality model in a programming problem plays an important role, we will establish the second-order Mond–Weir type and Wolfe type dual models, and derive the weak, strong, and strictly converse duality theorems.

Suggested Citation

  • Tone-Yau Huang, 2020. "Second-Order Parametric Free Dualities for Complex Minimax Fractional Programming," Mathematics, MDPI, vol. 8(1), pages 1-12, January.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:67-:d:304629
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/1/67/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/1/67/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. H. C. Lai & J. C. Liu & S. Schaible, 2008. "Complex Minimax Fractional Programming of Analytic Functions," Journal of Optimization Theory and Applications, Springer, vol. 137(1), pages 171-184, April.
    2. Hang-Chin Lai & Tone-Yau Huang, 2012. "Nondifferentiable minimax fractional programming in complex spaces with parametric duality," Journal of Global Optimization, Springer, vol. 53(2), pages 243-254, June.
    3. Elena-Corina Cipu, 2019. "Duality Results in Quasiinvex Variational Control Problems with Curvilinear Integral Functionals," Mathematics, MDPI, vol. 7(9), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei-Shih Du & Chung-Chuan Chen & Marko Kostić & Bessem Samet, 2023. "Preface to the Special Issue “Fixed Point Theory and Dynamical Systems with Applications”," Mathematics, MDPI, vol. 11(13), pages 1-2, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hang-Chin Lai & Tone-Yau Huang, 2012. "Nondifferentiable minimax fractional programming in complex spaces with parametric duality," Journal of Global Optimization, Springer, vol. 53(2), pages 243-254, June.
    2. Qingjie Hu & Jiguang Wang & Yu Chen, 2020. "New dualities for mathematical programs with vanishing constraints," Annals of Operations Research, Springer, vol. 287(1), pages 233-255, April.
    3. Jiawei Chen & Suliman Al-Homidan & Qamrul Hasan Ansari & Jun Li & Yibing Lv, 2021. "Robust Necessary Optimality Conditions for Nondifferentiable Complex Fractional Programming with Uncertain Data," Journal of Optimization Theory and Applications, Springer, vol. 189(1), pages 221-243, April.
    4. S. K. Mishra & Vinay Singh & Vivek Laha, 2016. "On duality for mathematical programs with vanishing constraints," Annals of Operations Research, Springer, vol. 243(1), pages 249-272, August.
    5. Thai Doan Chuong & Do Sang Kim, 2017. "Nondifferentiable minimax programming problems with applications," Annals of Operations Research, Springer, vol. 251(1), pages 73-87, April.
    6. Henan Li & Zhe Hong & Do Sang Kim, 2024. "A Minimax-Program-Based Approach for Robust Fractional Multi-Objective Optimization," Mathematics, MDPI, vol. 12(16), pages 1-14, August.
    7. Zhe Hong & Kwan Deok Bae & Do Sang Kim, 2022. "Minimax programming as a tool for studying robust multi-objective optimization problems," Annals of Operations Research, Springer, vol. 319(2), pages 1589-1606, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:67-:d:304629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.