IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i12p2230-d463045.html
   My bibliography  Save this article

A Multivariate Hybrid Stochastic Differential Equation Model for Whole-Stand Dynamics

Author

Listed:
  • Petras Rupšys

    (Agriculture Academy, Vytautas Magnus University, 53361 Kaunas, Lithuania
    Department of Mathematics and Statistics, Vytautas Magnus University, 44404 Kaunas, Lithuania)

  • Martynas Narmontas

    (Agriculture Academy, Vytautas Magnus University, 53361 Kaunas, Lithuania)

  • Edmundas Petrauskas

    (Agriculture Academy, Vytautas Magnus University, 53361 Kaunas, Lithuania)

Abstract

The growth and yield modeling of a forest stand has progressed rapidly, starting from the generalized nonlinear regression models of uneven/even-aged stands, and continuing to stochastic differential equation (SDE) models. We focus on the adaptation of the SDEs for the modeling of forest stand dynamics, and relate the tree and stand size variables to the age dimension (time). Two different types of diffusion processes are incorporated into a hybrid model in which the shortcomings of each variable types can be overcome to some extent. This paper presents the hybrid multivariate SDE regarding stand basal area and volume models in a forest stand. We estimate the fixed- and mixed-effect parameters for the multivariate hybrid stochastic differential equation using a maximum likelihood procedure. The results are illustrated using a dataset of measurements from Mountain pine tree ( Pinus mugo Turra).

Suggested Citation

  • Petras Rupšys & Martynas Narmontas & Edmundas Petrauskas, 2020. "A Multivariate Hybrid Stochastic Differential Equation Model for Whole-Stand Dynamics," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2230-:d:463045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/12/2230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/12/2230/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patricia Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2019. "A Note on Estimation of Multi-Sigmoidal Gompertz Functions with Random Noise," Mathematics, MDPI, vol. 7(6), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Di Crescenzo & Paola Paraggio & Patricia Román-Román & Francisco Torres-Ruiz, 2023. "Statistical analysis and first-passage-time applications of a lognormal diffusion process with multi-sigmoidal logistic mean," Statistical Papers, Springer, vol. 64(5), pages 1391-1438, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petras Rupšys, 2019. "Understanding the Evolution of Tree Size Diversity within the Multivariate Nonsymmetrical Diffusion Process and Information Measures," Mathematics, MDPI, vol. 7(8), pages 1-22, August.
    2. Antonio Barrera & Patricia Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2021. "Two Multi-Sigmoidal Diffusion Models for the Study of the Evolution of the COVID-19 Pandemic," Mathematics, MDPI, vol. 9(19), pages 1-29, September.
    3. Eva María Ramos-Ábalos & Ramón Gutiérrez-Sánchez & Ahmed Nafidi, 2020. "Powers of the Stochastic Gompertz and Lognormal Diffusion Processes, Statistical Inference and Simulation," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
    4. Antonio Barrera & Patricia Román-Román & Francisco Torres-Ruiz, 2020. "Two Stochastic Differential Equations for Modeling Oscillabolastic-Type Behavior," Mathematics, MDPI, vol. 8(2), pages 1-20, January.
    5. Antonio Di Crescenzo & Paola Paraggio & Patricia Román-Román & Francisco Torres-Ruiz, 2023. "Statistical analysis and first-passage-time applications of a lognormal diffusion process with multi-sigmoidal logistic mean," Statistical Papers, Springer, vol. 64(5), pages 1391-1438, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2230-:d:463045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.