IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i12p2152-d455477.html
   My bibliography  Save this article

On Homogeneous Combinations of Linear Recurrence Sequences

Author

Listed:
  • Marie Hubálovská

    (Department of Technical Education, Faculty of Education, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic)

  • Štěpán Hubálovský

    (Department of Applied Cybernetics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic)

  • Eva Trojovská

    (Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic)

Abstract

Let ( F n ) n ≥ 0 be the Fibonacci sequence given by F n + 2 = F n + 1 + F n , for n ≥ 0 , where F 0 = 0 and F 1 = 1 . There are several interesting identities involving this sequence such as F n 2 + F n + 1 2 = F 2 n + 1 , for all n ≥ 0 . In 2012, Chaves, Marques and Togbé proved that if ( G m ) m is a linear recurrence sequence (under weak assumptions) and G n + 1 s + ⋯ + G n + ℓ s ∈ ( G m ) m , for infinitely many positive integers n , then s is bounded by an effectively computable constant depending only on ł and the parameters of ( G m ) m . In this paper, we shall prove that if P ( x 1 , … , x ℓ ) is an integer homogeneous s -degree polynomial (under weak hypotheses) and if P ( G n + 1 , … , G n + ℓ ) ∈ ( G m ) m for infinitely many positive integers n , then s is bounded by an effectively computable constant depending only on ℓ , the parameters of ( G m ) m and the coefficients of P .

Suggested Citation

  • Marie Hubálovská & Štěpán Hubálovský & Eva Trojovská, 2020. "On Homogeneous Combinations of Linear Recurrence Sequences," Mathematics, MDPI, vol. 8(12), pages 1-7, December.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2152-:d:455477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/12/2152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/12/2152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pavel Trojovský, 2019. "On Terms of Generalized Fibonacci Sequences which are Powers of their Indexes," Mathematics, MDPI, vol. 7(8), pages 1-10, August.
    2. Pavel Trojovský, 2020. "Fibonacci Numbers with a Prescribed Block of Digits," Mathematics, MDPI, vol. 8(4), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petr Coufal & Pavel Trojovský, 2021. "Repdigits as Product of Terms of k -Bonacci Sequences," Mathematics, MDPI, vol. 9(6), pages 1-10, March.
    2. Dušan Bednařík & Eva Trojovská, 2020. "Repdigits as Product of Fibonacci and Tribonacci Numbers," Mathematics, MDPI, vol. 8(10), pages 1-8, October.
    3. Ana Paula Chaves & Pavel Trojovský, 2020. "A Quadratic Diophantine Equation Involving Generalized Fibonacci Numbers," Mathematics, MDPI, vol. 8(6), pages 1-10, June.
    4. Dongwei Guo & Wenchang Chu, 2022. "Sums of Pell/Lucas Polynomials and Fibonacci/Lucas Numbers," Mathematics, MDPI, vol. 10(15), pages 1-10, July.
    5. Yunyun Qu & Jiwen Zeng, 2020. "Lucas Numbers Which Are Concatenations of Two Repdigits," Mathematics, MDPI, vol. 8(8), pages 1-8, August.
    6. Pavel Trojovský, 2020. "On the Characteristic Polynomial of the Generalized k -Distance Tribonacci Sequences," Mathematics, MDPI, vol. 8(8), pages 1-8, August.
    7. Pavel Trojovský & Štěpán Hubálovský, 2020. "Some Diophantine Problems Related to k -Fibonacci Numbers," Mathematics, MDPI, vol. 8(7), pages 1-10, June.
    8. Pavel Trojovský, 2020. "Fibonacci Numbers with a Prescribed Block of Digits," Mathematics, MDPI, vol. 8(4), pages 1-7, April.
    9. Eva Trojovská & Pavel Trojovský, 2021. "On Fibonacci Numbers of Order r Which Are Expressible as Sum of Consecutive Factorial Numbers," Mathematics, MDPI, vol. 9(9), pages 1-9, April.
    10. Jose L. Herrera & Jhon J. Bravo & Carlos A. Gómez, 2021. "Curious Generalized Fibonacci Numbers," Mathematics, MDPI, vol. 9(20), pages 1-12, October.
    11. Nazlıhan Terzioğlu & Can Kızılateş & Wei-Shih Du, 2022. "New Properties and Identities for Fibonacci Finite Operator Quaternions," Mathematics, MDPI, vol. 10(10), pages 1-13, May.
    12. Muflih Alhazmi & Rexma Sherine Venchislas & Gerly Thaniel Gnanamuthu & Chellamani Perumal & Shreefa O. Hilali & Mashaer Alsaeedi & Avinash Natarajan & Britto Antony Xavier Gnanaprakasam, 2024. "H -Nacci Sequence and Its Role in Virus Mutation," Mathematics, MDPI, vol. 12(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2152-:d:455477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.