IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i8p700-d254586.html
   My bibliography  Save this article

On Terms of Generalized Fibonacci Sequences which are Powers of their Indexes

Author

Listed:
  • Pavel Trojovský

    (Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic)

Abstract

The k -generalized Fibonacci sequence ( F n ( k ) ) n (sometimes also called k -bonacci or k -step Fibonacci sequence), with k ≥ 2 , is defined by the values 0 , 0 , … , 0 , 1 of starting k its terms and such way that each term afterwards is the sum of the k preceding terms. This paper is devoted to the proof of the fact that the Diophantine equation F m ( k ) = m t , with t > 1 and m > k + 1 , has only solutions F 12 ( 2 ) = 12 2 and F 9 ( 3 ) = 9 2 .

Suggested Citation

  • Pavel Trojovský, 2019. "On Terms of Generalized Fibonacci Sequences which are Powers of their Indexes," Mathematics, MDPI, vol. 7(8), pages 1-10, August.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:8:p:700-:d:254586
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/8/700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/8/700/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunyun Qu & Jiwen Zeng, 2020. "Lucas Numbers Which Are Concatenations of Two Repdigits," Mathematics, MDPI, vol. 8(8), pages 1-8, August.
    2. Pavel Trojovský, 2020. "On the Characteristic Polynomial of the Generalized k -Distance Tribonacci Sequences," Mathematics, MDPI, vol. 8(8), pages 1-8, August.
    3. Pavel Trojovský & Štěpán Hubálovský, 2020. "Some Diophantine Problems Related to k -Fibonacci Numbers," Mathematics, MDPI, vol. 8(7), pages 1-10, June.
    4. Petr Coufal & Pavel Trojovský, 2021. "Repdigits as Product of Terms of k -Bonacci Sequences," Mathematics, MDPI, vol. 9(6), pages 1-10, March.
    5. Marie Hubálovská & Štěpán Hubálovský & Eva Trojovská, 2020. "On Homogeneous Combinations of Linear Recurrence Sequences," Mathematics, MDPI, vol. 8(12), pages 1-7, December.
    6. Dongwei Guo & Wenchang Chu, 2022. "Sums of Pell/Lucas Polynomials and Fibonacci/Lucas Numbers," Mathematics, MDPI, vol. 10(15), pages 1-10, July.
    7. Pavel Trojovský, 2020. "Fibonacci Numbers with a Prescribed Block of Digits," Mathematics, MDPI, vol. 8(4), pages 1-7, April.
    8. Eva Trojovská & Pavel Trojovský, 2021. "On Fibonacci Numbers of Order r Which Are Expressible as Sum of Consecutive Factorial Numbers," Mathematics, MDPI, vol. 9(9), pages 1-9, April.
    9. Muflih Alhazmi & Rexma Sherine Venchislas & Gerly Thaniel Gnanamuthu & Chellamani Perumal & Shreefa O. Hilali & Mashaer Alsaeedi & Avinash Natarajan & Britto Antony Xavier Gnanaprakasam, 2024. "H -Nacci Sequence and Its Role in Virus Mutation," Mathematics, MDPI, vol. 12(17), pages 1-19, August.
    10. Ana Paula Chaves & Pavel Trojovský, 2020. "A Quadratic Diophantine Equation Involving Generalized Fibonacci Numbers," Mathematics, MDPI, vol. 8(6), pages 1-10, June.
    11. Dušan Bednařík & Eva Trojovská, 2020. "Repdigits as Product of Fibonacci and Tribonacci Numbers," Mathematics, MDPI, vol. 8(10), pages 1-8, October.
    12. Nazlıhan Terzioğlu & Can Kızılateş & Wei-Shih Du, 2022. "New Properties and Identities for Fibonacci Finite Operator Quaternions," Mathematics, MDPI, vol. 10(10), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:8:p:700-:d:254586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.