IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i9p870-d268833.html
   My bibliography  Save this article

Classification of the State of Manufacturing Process under Indeterminacy

Author

Listed:
  • Muhammad Aslam

    (Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Osama Hasan Arif

    (Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

In this paper, the diagnosis of the manufacturing process under the indeterminate environment is presented. The similarity measure index was used to find the probability of the in-control and the out-of-control of the process. The average run length (ARL) was also computed for various values of specified parameters. An example from the Juice Company is considered under the indeterminate environment. From this study, it is concluded that the proposed diagnosis scheme under the neutrosophic statistics is quite simple and effective for the current state of the manufacturing process under uncertainty. The use of the proposed method under the uncertainty environment in the Juice Company may eliminate the non-conforming items and alternatively increase the profit of the company.

Suggested Citation

  • Muhammad Aslam & Osama Hasan Arif, 2019. "Classification of the State of Manufacturing Process under Indeterminacy," Mathematics, MDPI, vol. 7(9), pages 1-8, September.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:9:p:870-:d:268833
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/9/870/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/9/870/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. Jeyadurga & S. Balamurali & M. Aslam, 2018. "Design of an attribute np control chart for process monitoring based on repetitive group sampling under truncated life tests," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(24), pages 5934-5955, December.
    2. Lee Ho, Linda & Quinino, Roberto Costa, 2013. "An attribute control chart for monitoring the variability of a process," International Journal of Production Economics, Elsevier, vol. 145(1), pages 263-267.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simões, Felipe Domingues & Costa, Antonio Fernando Branco & Machado, Marcela Aparecida Guerreiro, 2020. "The Trinomial ATTRIVAR control chart," International Journal of Production Economics, Elsevier, vol. 224(C).
    2. Ammara Tanveer & Muhammad Azam & Muhammad Aslam & Muhammad Shujaat Navaz, 2020. "Attribute np control charts using resampling systems for monitoring non-conforming items under exponentiated half-logistic distribution," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(2), pages 115-143.
    3. Lim, S.L. & Khoo, Michael B.C. & Teoh, W.L. & Xie, M., 2015. "Optimal designs of the variable sample size and sampling interval X¯ chart when process parameters are estimated," International Journal of Production Economics, Elsevier, vol. 166(C), pages 20-35.
    4. Sabri-Laghaie, Kamyar & Fathi, Mahdi & Zio, Enrico & Mazhar, Maryam, 2022. "A novel reliability monitoring scheme based on the monitoring of manufacturing quality error rates," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Ho, Linda Lee & Aparisi, Francisco, 2016. "ATTRIVAR: Optimized control charts to monitor process mean with lower operational cost," International Journal of Production Economics, Elsevier, vol. 182(C), pages 472-483.
    6. Tomohiro, Ryosuke & Arizono, Ikuo & Takemoto, Yasuhiko, 2020. "Economic design of double sampling Cpm control chart for monitoring process capability," International Journal of Production Economics, Elsevier, vol. 221(C).
    7. Samrad Jafarian-Namin & Muhammad Aslam & Mohammad Saber Fallah Nezhad & Fatemeh Eskandari-Kataki, 2021. "Efficient designs of modeling attribute control charts for a Weibull distribution under truncated life tests," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 942-961, December.
    8. Hazen, Benjamin T. & Weigel, Fred K. & Ezell, Jeremy D. & Boehmke, Bradley C. & Bradley, Randy V., 2017. "Toward understanding outcomes associated with data quality improvement," International Journal of Production Economics, Elsevier, vol. 193(C), pages 737-747.
    9. Hazen, Benjamin T. & Boone, Christopher A. & Ezell, Jeremy D. & Jones-Farmer, L. Allison, 2014. "Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications," International Journal of Production Economics, Elsevier, vol. 154(C), pages 72-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:9:p:870-:d:268833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.