Optimal Sliced Latin Hypercube Designs with Slices of Arbitrary Run Sizes
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Edwin R. van Dam & Bart Husslage & Dick den Hertog & Hans Melissen, 2007.
"Maximin Latin Hypercube Designs in Two Dimensions,"
Operations Research, INFORMS, vol. 55(1), pages 158-169, February.
- van Dam, E.R. & Husslage, B.G.M. & den Hertog, D. & Melissen, H., 2005. "Maximin Latin Hypercube Designs in Two Dimensions," Discussion Paper 2005-8, Tilburg University, Center for Economic Research.
- van Dam, E.R. & den Hertog, D. & Husslage, B.G.M. & Melissen, H., 2007. "Maximin Latin hypercube designs in two dimensions," Other publications TiSEM b4eb1336-e9d8-441a-ac87-0, Tilburg University, School of Economics and Management.
- Edwin R. van Dam & Gijs Rennen & Bart Husslage, 2009.
"Bounds for Maximin Latin Hypercube Designs,"
Operations Research, INFORMS, vol. 57(3), pages 595-608, June.
- van Dam, E.R. & Rennen, G. & Husslage, B.G.M., 2007. "Bounds for Maximin Latin Hypercube Designs," Discussion Paper 2007-16, Tilburg University, Center for Economic Research.
- van Dam, E.R. & Rennen, G. & Husslage, B.G.M., 2009. "Bounds for maximin Latin hypercube designs," Other publications TiSEM f556d9e2-e3b9-42db-96ee-9, Tilburg University, School of Economics and Management.
- Xiangshun Kong & Mingyao Ai & Kwok Leung Tsui, 2018. "Flexible sliced designs for computer experiments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 631-646, June.
- Hao Chen & Hengzhen Huang & Dennis K. J. Lin & Min‐Qian Liu, 2016. "Uniform sliced Latin hypercube designs," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 32(5), pages 574-584, September.
- Grosso, A. & Jamali, A.R.M.J.U. & Locatelli, M., 2009. "Finding maximin latin hypercube designs by Iterated Local Search heuristics," European Journal of Operational Research, Elsevier, vol. 197(2), pages 541-547, September.
- Peter Z. G. Qian, 2012. "Sliced Latin Hypercube Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 393-399, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang You & Guang Jin & Zhengqiang Pan & Rui Guo, 2021. "MP-CE Method for Space-Filling Design in Constrained Space with Multiple Types of Factors," Mathematics, MDPI, vol. 9(24), pages 1-13, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liuqing Yang & Yongdao Zhou & Min-Qian Liu, 2021. "Maximin distance designs based on densest packings," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 615-634, July.
- Tonghui Pang & Yan Wang & Jian-Feng Yang, 2022. "Asymptotically optimal maximin distance Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 405-418, May.
- Edwin Dam & Bart Husslage & Dick Hertog, 2010.
"One-dimensional nested maximin designs,"
Journal of Global Optimization, Springer, vol. 46(2), pages 287-306, February.
- van Dam, E.R. & Husslage, B.G.M. & den Hertog, D., 2004. "One-Dimensional Nested Maximin Designs," Discussion Paper 2004-66, Tilburg University, Center for Economic Research.
- van Dam, E.R. & Husslage, B.G.M. & den Hertog, D., 2010. "One-dimensional nested maximin designs," Other publications TiSEM cf47da9c-59f8-4533-a845-8, Tilburg University, School of Economics and Management.
- Rennen, G., 2008. "Subset Selection from Large Datasets for Kriging Modeling," Discussion Paper 2008-26, Tilburg University, Center for Economic Research.
- Husslage, B.G.M. & Rennen, G. & van Dam, E.R. & den Hertog, D., 2008. "Space-Filling Latin Hypercube Designs For Computer Experiments (Revision of CentER DP 2006-18)," Discussion Paper 2008-104, Tilburg University, Center for Economic Research.
- Edwin R. van Dam & Gijs Rennen & Bart Husslage, 2009.
"Bounds for Maximin Latin Hypercube Designs,"
Operations Research, INFORMS, vol. 57(3), pages 595-608, June.
- van Dam, E.R. & Rennen, G. & Husslage, B.G.M., 2007. "Bounds for Maximin Latin Hypercube Designs," Discussion Paper 2007-16, Tilburg University, Center for Economic Research.
- van Dam, E.R. & Rennen, G. & Husslage, B.G.M., 2009. "Bounds for maximin Latin hypercube designs," Other publications TiSEM f556d9e2-e3b9-42db-96ee-9, Tilburg University, School of Economics and Management.
- van Dam, E.R. & Rennen, G. & Husslage, B.G.M., 2007. "Bounds for Maximin Latin Hypercube Designs," Other publications TiSEM da0c15be-f18e-474e-b557-f, Tilburg University, School of Economics and Management.
- Crombecq, K. & Laermans, E. & Dhaene, T., 2011. "Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling," European Journal of Operational Research, Elsevier, vol. 214(3), pages 683-696, November.
- Rennen, G., 2008. "Subset Selection from Large Datasets for Kriging Modeling," Other publications TiSEM 9dfe6396-1933-45c0-b4e3-5, Tilburg University, School of Economics and Management.
- Rennen, G. & Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2009. "Nested Maximin Latin Hypercube Designs," Other publications TiSEM 1c504ec0-f357-42d2-9c92-9, Tilburg University, School of Economics and Management.
- Husslage, B.G.M. & Rennen, G. & van Dam, E.R. & den Hertog, D., 2008. "Space-Filling Latin Hypercube Designs For Computer Experiments (Revision of CentER DP 2006-18)," Other publications TiSEM 1b5d18c7-b66f-4a9f-838c-b, Tilburg University, School of Economics and Management.
- Rennen, G. & Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2009.
"Nested Maximin Latin Hypercube Designs,"
Discussion Paper
2009-06, Tilburg University, Center for Economic Research.
- Rennen, G. & Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2010. "Nested maximin Latin hypercube designs," Other publications TiSEM 7f0703e8-06bc-45b4-886c-3, Tilburg University, School of Economics and Management.
- HARCSA Imre Milán & KOVÁCS Sándor & NÁBRÁDI András, 2020. "Economic Analysis Of Subcontract Distilleries By Simulation Modeling Method," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 50-63, July.
- Mu, Weiyan & Xiong, Shifeng, 2018. "A class of space-filling designs and their projection properties," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 129-134.
- Siem, A.Y.D. & den Hertog, D., 2007. "Kriging Models That Are Robust With Respect to Simulation Errors," Other publications TiSEM fe73dc8b-20d6-4f50-95eb-f, Tilburg University, School of Economics and Management.
- van Dam, E.R., 2008. "Two-dimensional maximin Latin hypercube designs," Other publications TiSEM 61788dd1-b1b5-4c81-9151-8, Tilburg University, School of Economics and Management.
- Siem, A.Y.D. & den Hertog, D., 2007. "Kriging Models That Are Robust With Respect to Simulation Errors," Discussion Paper 2007-68, Tilburg University, Center for Economic Research.
- Xiangjing Lai & Jin-Kao Hao & Renbin Xiao & Fred Glover, 2023. "Perturbation-Based Thresholding Search for Packing Equal Circles and Spheres," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 725-746, July.
- Ru Yuan & Bing Guo & Min-Qian Liu, 2021. "Flexible sliced Latin hypercube designs with slices of different sizes," Statistical Papers, Springer, vol. 62(3), pages 1117-1134, June.
- Li, Min & Liu, Min-Qian & Wang, Xiao-Lei & Zhou, Yong-Dao, 2020. "Prediction for computer experiments with both quantitative and qualitative factors," Statistics & Probability Letters, Elsevier, vol. 165(C).
More about this item
Keywords
computer experiment; optimal design; space-filling design; maximin distance criterion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:9:p:854-:d:267711. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.