IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i9p773-d260133.html
   My bibliography  Save this article

Strong Convergence of a New Generalized Viscosity Implicit Rule and Some Applications in Hilbert Space

Author

Listed:
  • Mihai Postolache

    (Department of General Education, China Medical University, Taichung 40402, Taiwan
    Gh. Mihoc-C. Iacob Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, 050711 Bucharest, Romania
    Department of Mathematics and Informatics, University “Politehnica” of Bucharest, 060042 Bucharest, Romania
    Current address: Department of Mathematics and Informatics, University “Politehnica” of Bucharest, 060042 Bucharest, Romania.)

  • Ashish Nandal

    (Department of Mathematics, Pt NRS Government College, Rohtak 124001, India
    These authors contributed equally to this work.)

  • Renu Chugh

    (Department of Mathematics, Maharshi Dayanand University, Rohtak 124001, India
    These authors contributed equally to this work.)

Abstract

In this paper, based on the very recent work by Nandal et al. (Nandal, A.; Chugh, R.; Postolache, M. Iteration process for fixed point problems and zeros of maximal monotone operators. Symmetry 2019 , 11 , 655.), we propose a new generalized viscosity implicit rule for finding a common element of the fixed point sets of a finite family of nonexpansive mappings and the sets of zeros of maximal monotone operators. Utilizing the main result, we first propose and investigate a new general system of generalized equilibrium problems, which includes several equilibrium and variational inequality problems as special cases, and then we derive an implicit iterative method to solve constrained multiple-set split convex feasibility problem. We further combine forward-backward splitting method and generalized viscosity implicit rule for solving monotone inclusion problem. Moreover, we apply the main result to solve convex minimization problem.

Suggested Citation

  • Mihai Postolache & Ashish Nandal & Renu Chugh, 2019. "Strong Convergence of a New Generalized Viscosity Implicit Rule and Some Applications in Hilbert Space," Mathematics, MDPI, vol. 7(9), pages 1-24, August.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:9:p:773-:d:260133
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/9/773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/9/773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu-Chuan Ceng & Abdul Latif & Abdullah E. Al-Mazrooei, 2014. "Iterative Algorithms for Systems of Generalized Equilibrium Problems with the Constraints of Variational Inclusion and Fixed Point Problems," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-24, March.
    2. Lu-Chuan Ceng & Chang-yu Wang & Jen-Chih Yao, 2008. "Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(3), pages 375-390, June.
    3. Lu-Chuan Ceng & Qamrul Ansari & Siegfried Schaible, 2012. "Hybrid extragradient-like methods for generalized mixed equilibrium problems, systems of generalized equilibrium problems and optimization problems," Journal of Global Optimization, Springer, vol. 53(1), pages 69-96, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumari, Sudesh & Gdawiec, Krzysztof & Nandal, Ashish & Postolache, Mihai & Chugh, Renu, 2022. "A novel approach to generate Mandelbrot sets, Julia sets and biomorphs via viscosity approximation method," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu-Chuan Ceng & Mihai Postolache & Xiaolong Qin & Yonghong Yao, 2018. "System of Variational Inclusions and Fixed Points of Pseudocontractive Mappings in Banach Spaces," Mathematics, MDPI, vol. 7(1), pages 1-14, December.
    2. Yanlai Song & Luchuan Ceng, 2013. "A general iteration scheme for variational inequality problem and common fixed point problems of nonexpansive mappings in q-uniformly smooth Banach spaces," Journal of Global Optimization, Springer, vol. 57(4), pages 1327-1348, December.
    3. Lu-Chuan Ceng & Meijuan Shang, 2019. "Generalized Mann Viscosity Implicit Rules for Solving Systems of Variational Inequalities with Constraints of Variational Inclusions and Fixed Point Problems," Mathematics, MDPI, vol. 7(10), pages 1-18, October.
    4. S. Plubtieng & T. Thammathiwat, 2010. "A viscosity approximation method for equilibrium problems, fixed point problems of nonexpansive mappings and a general system of variational inequalities," Journal of Global Optimization, Springer, vol. 46(3), pages 447-464, March.
    5. Lu-Chuan Ceng & Meijuan Shang, 2019. "Strong Convergence Theorems for Variational Inequalities and Common Fixed-Point Problems Using Relaxed Mann Implicit Iteration Methods," Mathematics, MDPI, vol. 7(5), pages 1-16, May.
    6. Yuanheng Wang & Cancan Li & Lirong Lu, 2020. "A New Algorithm for the Common Solutions of a Generalized Variational Inequality System and a Nonlinear Operator Equation in Banach Spaces," Mathematics, MDPI, vol. 8(11), pages 1-21, November.
    7. Lu-Chuan Ceng & Qing Yuan, 2019. "Hybrid Mann Viscosity Implicit Iteration Methods for Triple Hierarchical Variational Inequalities, Systems of Variational Inequalities and Fixed Point Problems," Mathematics, MDPI, vol. 7(2), pages 1-24, February.
    8. Anchalee Sripattanet & Atid Kangtunyakarn, 2019. "Convergence Theorem of Two Sequences for Solving the Modified Generalized System of Variational Inequalities and Numerical Analysis," Mathematics, MDPI, vol. 7(10), pages 1-18, October.
    9. Lu-Chuan Ceng & Xiaoye Yang, 2019. "Some Mann-Type Implicit Iteration Methods for Triple Hierarchical Variational Inequalities, Systems Variational Inequalities and Fixed Point Problems," Mathematics, MDPI, vol. 7(3), pages 1-20, February.
    10. Rais Ahmad & Mohd Ishtyak & Arvind Kumar Rajpoot & Yuanheng Wang, 2022. "Solving System of Mixed Variational Inclusions Involving Generalized Cayley Operator and Generalized Yosida Approximation Operator with Error Terms in q -Uniformly Smooth Space," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    11. Lu-Chuan Ceng & Xiaolong Qin & Yekini Shehu & Jen-Chih Yao, 2019. "Mildly Inertial Subgradient Extragradient Method for Variational Inequalities Involving an Asymptotically Nonexpansive and Finitely Many Nonexpansive Mappings," Mathematics, MDPI, vol. 7(10), pages 1-19, September.
    12. Lu-Chuan Ceng & Qing Yuan, 2019. "Systems of Variational Inequalities with Nonlinear Operators," Mathematics, MDPI, vol. 7(4), pages 1-20, April.
    13. Satit Saejung & Kanokwan Wongchan, 2011. "A note on Ceng-Wang-Yao’s result [Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Meth. Oper. Res. (2008) 67: 375–390]," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 153-157, April.
    14. Gang Cai & Shangquan Bu, 2013. "Strong convergence theorems for variational inequality problems and fixed point problems in uniformly smooth and uniformly convex Banach spaces," Journal of Global Optimization, Springer, vol. 56(4), pages 1529-1542, August.
    15. Lu-Chuan Ceng & Qamrul Ansari & Siegfried Schaible, 2012. "Hybrid extragradient-like methods for generalized mixed equilibrium problems, systems of generalized equilibrium problems and optimization problems," Journal of Global Optimization, Springer, vol. 53(1), pages 69-96, May.
    16. Gang Cai & Shangquan Bu, 2013. "Modified extragradient methods for variational inequality problems and fixed point problems for an infinite family of nonexpansive mappings in Banach spaces," Journal of Global Optimization, Springer, vol. 55(2), pages 437-457, February.
    17. Lu-Chuan Ceng & Qing Yuan, 2019. "Triple Hierarchical Variational Inequalities, Systems of Variational Inequalities, and Fixed Point Problems," Mathematics, MDPI, vol. 7(2), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:9:p:773-:d:260133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.