A general iteration scheme for variational inequality problem and common fixed point problems of nonexpansive mappings in q-uniformly smooth Banach spaces
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-012-9990-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- W. Takahashi & M. Toyoda, 2003. "Weak Convergence Theorems for Nonexpansive Mappings and Monotone Mappings," Journal of Optimization Theory and Applications, Springer, vol. 118(2), pages 417-428, August.
- Lu-Chuan Ceng & Chang-yu Wang & Jen-Chih Yao, 2008. "Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(3), pages 375-390, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yanlai Song & Mihai Postolache, 2021. "Modified Inertial Forward–Backward Algorithm in Banach Spaces and Its Application," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
- Lu-Chuan Ceng & Meijuan Shang, 2019. "Generalized Mann Viscosity Implicit Rules for Solving Systems of Variational Inequalities with Constraints of Variational Inclusions and Fixed Point Problems," Mathematics, MDPI, vol. 7(10), pages 1-18, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- S. Plubtieng & T. Thammathiwat, 2010. "A viscosity approximation method for equilibrium problems, fixed point problems of nonexpansive mappings and a general system of variational inequalities," Journal of Global Optimization, Springer, vol. 46(3), pages 447-464, March.
- Satit Saejung & Kanokwan Wongchan, 2011. "A note on Ceng-Wang-Yao’s result [Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Meth. Oper. Res. (2008) 67: 375–390]," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 153-157, April.
- Lu-Chuan Ceng & Meijuan Shang, 2019. "Strong Convergence Theorems for Variational Inequalities and Common Fixed-Point Problems Using Relaxed Mann Implicit Iteration Methods," Mathematics, MDPI, vol. 7(5), pages 1-16, May.
- A. Tada & W. Takahashi, 2007. "Weak and Strong Convergence Theorems for a Nonexpansive Mapping and an Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 359-370, June.
- Lili Chen & Ni Yang & Jing Zhou, 2020. "Common Attractive Points of Generalized Hybrid Multi-Valued Mappings and Applications," Mathematics, MDPI, vol. 8(8), pages 1-15, August.
- Yuanheng Wang & Mingyue Yuan & Bingnan Jiang, 2021. "Multi-Step Inertial Hybrid and Shrinking Tseng’s Algorithm with Meir–Keeler Contractions for Variational Inclusion Problems," Mathematics, MDPI, vol. 9(13), pages 1-13, July.
- Yuanheng Wang & Cancan Li & Lirong Lu, 2020. "A New Algorithm for the Common Solutions of a Generalized Variational Inequality System and a Nonlinear Operator Equation in Banach Spaces," Mathematics, MDPI, vol. 8(11), pages 1-21, November.
- Lu-Chuan Ceng & Mihai Postolache & Xiaolong Qin & Yonghong Yao, 2018. "System of Variational Inclusions and Fixed Points of Pseudocontractive Mappings in Banach Spaces," Mathematics, MDPI, vol. 7(1), pages 1-14, December.
- Anchalee Sripattanet & Atid Kangtunyakarn, 2019. "Convergence Theorem of Two Sequences for Solving the Modified Generalized System of Variational Inequalities and Numerical Analysis," Mathematics, MDPI, vol. 7(10), pages 1-18, October.
- L. Zeng & J. Yao, 2009. "A hybrid extragradient method for general variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 141-158, March.
- Lu-Chuan Ceng & Xiaoye Yang, 2019. "Some Mann-Type Implicit Iteration Methods for Triple Hierarchical Variational Inequalities, Systems Variational Inequalities and Fixed Point Problems," Mathematics, MDPI, vol. 7(3), pages 1-20, February.
- Rais Ahmad & Mohd Ishtyak & Arvind Kumar Rajpoot & Yuanheng Wang, 2022. "Solving System of Mixed Variational Inclusions Involving Generalized Cayley Operator and Generalized Yosida Approximation Operator with Error Terms in q -Uniformly Smooth Space," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
- Yekini Shehu, 2012. "Iterative method for fixed point problem, variational inequality and generalized mixed equilibrium problems with applications," Journal of Global Optimization, Springer, vol. 52(1), pages 57-77, January.
- J. W. Peng, 2010. "Iterative Algorithms for Mixed Equilibrium Problems, Strict Pseudocontractions and Monotone Mappings," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 107-119, January.
- Ming Tian & Meng-Ying Tong, 2019. "Extension and Application of the Yamada Iteration Algorithm in Hilbert Spaces," Mathematics, MDPI, vol. 7(3), pages 1-13, February.
- Lu-Chuan Ceng & Qamrul Ansari & Siegfried Schaible, 2012. "Hybrid extragradient-like methods for generalized mixed equilibrium problems, systems of generalized equilibrium problems and optimization problems," Journal of Global Optimization, Springer, vol. 53(1), pages 69-96, May.
- Shin-ya Matsushita & Li Xu, 2014. "On Finite Convergence of Iterative Methods for Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 701-715, June.
- Lu-Chuan Ceng & Meijuan Shang, 2019. "Generalized Mann Viscosity Implicit Rules for Solving Systems of Variational Inequalities with Constraints of Variational Inclusions and Fixed Point Problems," Mathematics, MDPI, vol. 7(10), pages 1-18, October.
- Z. Y. Huang & M. A. Noor & E. Al-Said, 2010. "On an Open Question of Takahashi for Nonexpansive Mappings and Inverse Strongly Monotone Mappings," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 194-204, October.
- W. Takahashi, 2013. "Strong Convergence Theorems for Maximal and Inverse-Strongly Monotone Mappings in Hilbert Spaces and Applications," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 781-802, June.
More about this item
Keywords
q-Uniformly smooth; Banach space; Strong convergence; Iterative algorithm; Fixed point; Strongly accretive operator; Inverse strongly accretive operator; 47H09; 47H10; 47H17;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:57:y:2013:i:4:p:1327-1348. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.