IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i6p511-d237258.html
   My bibliography  Save this article

Fractional Calculus as a Simple Tool for Modeling and Analysis of Long Memory Process in Industry

Author

Listed:
  • Ivo Petráš

    (Faculty of BERG, Technical University of Košice, Němcovej 3, 04200 Košice, Slovakia)

  • Ján Terpák

    (Faculty of BERG, Technical University of Košice, Němcovej 3, 04200 Košice, Slovakia)

Abstract

This paper deals with the application of the fractional calculus as a tool for mathematical modeling and analysis of real processes, so called fractional-order processes. It is well-known that most real industrial processes are fractional-order ones. The main purpose of the article is to demonstrate a simple and effective method for the treatment of the output of fractional processes in the form of time series. The proposed method is based on fractional-order differentiation/integration using the Grünwald–Letnikov definition of the fractional-order operators. With this simple approach, we observe important properties in the time series and make decisions in real process control. Finally, an illustrative example for a real data set from a steelmaking process is presented.

Suggested Citation

  • Ivo Petráš & Ján Terpák, 2019. "Fractional Calculus as a Simple Tool for Modeling and Analysis of Long Memory Process in Industry," Mathematics, MDPI, vol. 7(6), pages 1-9, June.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:6:p:511-:d:237258
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/6/511/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/6/511/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Economic Growth Model with Constant Pace and Dynamic Memory," Papers 1701.06299, arXiv.org, revised Apr 2019.
    2. Ming Li, 2010. "Fractal Time Series—A Tutorial Review," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-26, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Wang & JinRong Wang & Michal Fečkan, 2020. "BP Neural Network Calculus in Economic Growth Modelling of the Group of Seven," Mathematics, MDPI, vol. 8(1), pages 1-11, January.
    2. Vasily E. Tarasov, 2019. "Rules for Fractional-Dynamic Generalizations: Difficulties of Constructing Fractional Dynamic Models," Mathematics, MDPI, vol. 7(6), pages 1-50, June.
    3. Tajmirriahi, Mahnoosh & Amini, Zahra, 2021. "Modeling of seizure and seizure-free EEG signals based on stochastic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Tarasov, Vasily E. & Tarasova, Valentina V., 2018. "Macroeconomic models with long dynamic memory: Fractional calculus approach," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 466-486.
    5. Hao Ming & JinRong Wang & Michal Fečkan, 2019. "The Application of Fractional Calculus in Chinese Economic Growth Models," Mathematics, MDPI, vol. 7(8), pages 1-6, July.
    6. Vasily E. Tarasov & Svetlana S. Tarasova, 2020. "Fractional Derivatives and Integrals: What Are They Needed For?," Mathematics, MDPI, vol. 8(2), pages 1-22, January.
    7. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    8. Andrea Giusti & Francesco Mainardi, 2020. "Advanced Mathematical Methods: Theory and Applications," Mathematics, MDPI, vol. 8(1), pages 1-2, January.
    9. Vasily E. Tarasov, 2020. "Non-Linear Macroeconomic Models of Growth with Memory," Mathematics, MDPI, vol. 8(11), pages 1-22, November.
    10. Tomas Skovranek, 2019. "The Mittag-Leffler Fitting of the Phillips Curve," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
    11. José A. Tenreiro Machado & Maria Eugénia Mata & António M. Lopes, 2020. "Fractional Dynamics and Pseudo-Phase Space of Country Economic Processes," Mathematics, MDPI, vol. 8(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:6:p:511-:d:237258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.