IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i4p315-d217960.html
   My bibliography  Save this article

Optimal Task Allocation in Wireless Sensor Networks by Means of Social Network Optimization

Author

Listed:
  • Alessandro Niccolai

    (Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

  • Francesco Grimaccia

    (Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

  • Marco Mussetta

    (Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

  • Riccardo Zich

    (Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

Abstract

Wireless Sensor Networks (WSN) have been widely adopted for years, but their role is growing significantly currently with the increase of the importance of the Internet of Things paradigm. Moreover, since the computational capability of small-sized devices is also increasing, WSN are now capable of performing relevant operations. An optimal scheduling of these in-network processes can affect both the total computational time and the energy requirements. Evolutionary optimization techniques can address this problem successfully due to their capability to manage non-linear problems with many design variables. In this paper, an evolutionary algorithm recently developed, named Social Network Optimization (SNO), has been applied to the problem of task allocation in a WSN. The optimization results on two test cases have been analyzed: in the first one, no energy constraints have been added to the optimization, while in the second one, a minimum number of life cycles is imposed.

Suggested Citation

  • Alessandro Niccolai & Francesco Grimaccia & Marco Mussetta & Riccardo Zich, 2019. "Optimal Task Allocation in Wireless Sensor Networks by Means of Social Network Optimization," Mathematics, MDPI, vol. 7(4), pages 1-15, March.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:4:p:315-:d:217960
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/4/315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/4/315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emanuele Ogliari & Alessandro Niccolai & Sonia Leva & Riccardo E. Zich, 2018. "Computational Intelligence Techniques Applied to the Day Ahead PV Output Power Forecast: PHANN, SNO and Mixed," Energies, MDPI, vol. 11(6), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diyin Tang & Xuan Wang & Junwei Di & Guofeng Zheng & Jinsong Yu, 2023. "Joint optimization of inspection and maintenance strategy for complex multi-component systems using a quantum-inspired genetic algorithm," Journal of Risk and Reliability, , vol. 237(5), pages 966-979, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Niccolai & Alberto Dolara & Emanuele Ogliari, 2021. "Hybrid PV Power Forecasting Methods: A Comparison of Different Approaches," Energies, MDPI, vol. 14(2), pages 1-18, January.
    2. Jessica Wojtkiewicz & Matin Hosseini & Raju Gottumukkala & Terrence Lynn Chambers, 2019. "Hour-Ahead Solar Irradiance Forecasting Using Multivariate Gated Recurrent Units," Energies, MDPI, vol. 12(21), pages 1-13, October.
    3. Chao-Rong Chen & Faouzi Brice Ouedraogo & Yu-Ming Chang & Devita Ayu Larasati & Shih-Wei Tan, 2021. "Hour-Ahead Photovoltaic Output Forecasting Using Wavelet-ANFIS," Mathematics, MDPI, vol. 9(19), pages 1-14, October.
    4. Limouni, Tariq & Yaagoubi, Reda & Bouziane, Khalid & Guissi, Khalid & Baali, El Houssain, 2023. "Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model," Renewable Energy, Elsevier, vol. 205(C), pages 1010-1024.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Alessandro Niccolai & Alfredo Nespoli, 2020. "Sun Position Identification in Sky Images for Nowcasting Application," Forecasting, MDPI, vol. 2(4), pages 1-17, November.
    7. Lilin Cheng & Haixiang Zang & Tao Ding & Rong Sun & Miaomiao Wang & Zhinong Wei & Guoqiang Sun, 2018. "Ensemble Recurrent Neural Network Based Probabilistic Wind Speed Forecasting Approach," Energies, MDPI, vol. 11(8), pages 1-23, July.
    8. Michal Pavlicko & Mária Vojteková & Oľga Blažeková, 2022. "Forecasting of Electrical Energy Consumption in Slovakia," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
    9. Nespoli, Alfredo & Niccolai, Alessandro & Ogliari, Emanuele & Perego, Giovanni & Collino, Elena & Ronzio, Dario, 2022. "Machine Learning techniques for solar irradiation nowcasting: Cloud type classification forecast through satellite data and imagery," Applied Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:4:p:315-:d:217960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.