IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i11p1071-d284703.html
   My bibliography  Save this article

On the Wiener Complexity and the Wiener Index of Fullerene Graphs

Author

Listed:
  • Andrey A. Dobrynin

    (Laboratory of Topology and Dynamics, Novosibirsk State University, 630090 Novosibirsk, Russia
    Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia)

  • Andrei Yu Vesnin

    (Laboratory of Topology and Dynamics, Novosibirsk State University, 630090 Novosibirsk, Russia
    Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
    Regional Scientific and Educational Mathematical Center, Tomsk State University, 634050 Tomsk, Russia)

Abstract

Fullerenes are molecules that can be presented in the form of cage-like polyhedra, consisting only of carbon atoms. Fullerene graphs are mathematical models of fullerene molecules. The transmission of a vertex v of a graph is a local graph invariant defined as the sum of distances from v to all the other vertices. The number of different vertex transmissions is called the Wiener complexity of a graph. Some calculation results on the Wiener complexity and the Wiener index of fullerene graphs of order n ≤ 232 and IPR fullerene graphs of order n ≤ 270 are presented. The structure of graphs with the maximal Wiener complexity or the maximal Wiener index is discussed, and formulas for the Wiener index of several families of graphs are obtained.

Suggested Citation

  • Andrey A. Dobrynin & Andrei Yu Vesnin, 2019. "On the Wiener Complexity and the Wiener Index of Fullerene Graphs," Mathematics, MDPI, vol. 7(11), pages 1-17, November.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1071-:d:284703
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/11/1071/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/11/1071/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klavžar, Sandi & Azubha Jemilet, D. & Rajasingh, Indra & Manuel, Paul & Parthiban, N., 2018. "General Transmission Lemma and Wiener complexity of triangular grids," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 115-122.
    2. Andova, Vesna & Orlić, Damir & Škrekovski, Riste, 2017. "Leapfrog fullerenes and Wiener index," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 281-288.
    3. Dobrynin, Andrey A., 2019. "Infinite family of 2-connected transmission irregular graphs," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 1-4.
    4. Alizadeh, Yaser & Klavžar, Sandi, 2018. "On graphs whose Wiener complexity equals their order and on Wiener index of asymmetric graphs," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 113-118.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Brezovnik & Niko Tratnik & Petra Žigert Pleteršek, 2021. "Weighted Wiener Indices of Molecular Graphs with Application to Alkenes and Alkadienes," Mathematics, MDPI, vol. 9(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Yakoob, Salem & Stevanović, Dragan, 2020. "On transmission irregular starlike trees," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    2. Anatoly Yu. Bezhaev & Andrey A. Dobrynin, 2022. "On Transmission Irregular Cubic Graphs of an Arbitrary Order," Mathematics, MDPI, vol. 10(15), pages 1-15, August.
    3. Sharon, Jane Olive & Rajalaxmi, T.M. & Klavžar, Sandi & Rajan, R. Sundara & Rajasingh, Indra, 2021. "Transmission in H-naphtalenic nanosheet," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    4. Dobrynin, Andrey A. & Sharafdini, Reza, 2020. "Stepwise transmission irregular graphs," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    5. Bezhaev, Anatoly Yu. & Dobrynin, Andrey A., 2021. "On quartic transmission irregular graphs," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    6. Ghorbani, Modjtaba & Vaziri, Zahra, 2024. "On the Szeged and Wiener complexities in graphs," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    7. Damnjanović, Ivan & Stevanović, Dragan & Al-Yakoob, Salem, 2024. "On transmission-irregular graphs and long pendent paths," Applied Mathematics and Computation, Elsevier, vol. 482(C).
    8. Martin Knor & Riste Škrekovski, 2020. "Wiener Complexity versus the Eccentric Complexity," Mathematics, MDPI, vol. 9(1), pages 1-9, December.
    9. Alizadeh, Yaser & Klavžar, Sandi, 2018. "On graphs whose Wiener complexity equals their order and on Wiener index of asymmetric graphs," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 113-118.
    10. Hriňáková, Katarína & Knor, Martin & Škrekovski, Riste, 2019. "An inequality between variable wiener index and variable szeged index," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    11. Lin, Hongying & Zhou, Bo, 2021. "Which numbers are status differences?," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    12. Klavžar, Sandi & Azubha Jemilet, D. & Rajasingh, Indra & Manuel, Paul & Parthiban, N., 2018. "General Transmission Lemma and Wiener complexity of triangular grids," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 115-122.
    13. Dobrynin, Andrey A., 2019. "Infinite family of 2-connected transmission irregular graphs," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 1-4.
    14. Simon Brezovnik & Niko Tratnik & Petra Žigert Pleteršek, 2021. "Weighted Wiener Indices of Molecular Graphs with Application to Alkenes and Alkadienes," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    15. Hamid Darabi & Yaser Alizadeh & Sandi Klavžar & Kinkar Chandra Das, 2021. "On the relation between Wiener index and eccentricity of a graph," Journal of Combinatorial Optimization, Springer, vol. 41(4), pages 817-829, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1071-:d:284703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.