IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v470y2024ics0096300324000043.html
   My bibliography  Save this article

On the Szeged and Wiener complexities in graphs

Author

Listed:
  • Ghorbani, Modjtaba
  • Vaziri, Zahra

Abstract

When characterizing networks structurally, the discriminating ability of a topological index is crucial. This relates to investigate its discrimination power (also called uniqueness or degeneracy) that indicates how meaningful the given measure can distinguish nonisomorphic networks. Assume G is a connected graph. The Szeged complexity (or briefly Sz-complexity) of a graph G is the number of different portions in the Szeged index formula. Also, the Wiener complexity (or briefly W-complexity) can be defined similarly. In the current work, we study graphs with small Sz-complexity. We characterize trees with Sz-complexity two and bicyclic graphs with Sz-complexity one. In this way, first we introduce some graphs with Sz-complexity one. For instance, we investigate Θ-graph and two categories of k-cyclic graphs. Besides, we classify bicyclic graphs with Sz-complexity equal to the number of edge-orbits. Finally, we determine W-complexity of these graphs.

Suggested Citation

  • Ghorbani, Modjtaba & Vaziri, Zahra, 2024. "On the Szeged and Wiener complexities in graphs," Applied Mathematics and Computation, Elsevier, vol. 470(C).
  • Handle: RePEc:eee:apmaco:v:470:y:2024:i:c:s0096300324000043
    DOI: 10.1016/j.amc.2024.128532
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324000043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Xiuwen & Wang, Ligong, 2020. "Extremal Laplacian energy of directed trees, unicyclic digraphs and bicyclic digraphs," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    2. Alizadeh, Yaser & Klavžar, Sandi, 2018. "On graphs whose Wiener complexity equals their order and on Wiener index of asymmetric graphs," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 113-118.
    3. Klavžar, Sandi & Azubha Jemilet, D. & Rajasingh, Indra & Manuel, Paul & Parthiban, N., 2018. "General Transmission Lemma and Wiener complexity of triangular grids," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 115-122.
    4. Ghorbani, Modjtaba & Vaziri, Zahra, 2023. "Graphs with small distance-based complexities," Applied Mathematics and Computation, Elsevier, vol. 457(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharon, Jane Olive & Rajalaxmi, T.M. & Klavžar, Sandi & Rajan, R. Sundara & Rajasingh, Indra, 2021. "Transmission in H-naphtalenic nanosheet," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    2. Andrey A. Dobrynin & Andrei Yu Vesnin, 2019. "On the Wiener Complexity and the Wiener Index of Fullerene Graphs," Mathematics, MDPI, vol. 7(11), pages 1-17, November.
    3. Al-Yakoob, Salem & Stevanović, Dragan, 2020. "On transmission irregular starlike trees," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    4. Anatoly Yu. Bezhaev & Andrey A. Dobrynin, 2022. "On Transmission Irregular Cubic Graphs of an Arbitrary Order," Mathematics, MDPI, vol. 10(15), pages 1-15, August.
    5. Martin Knor & Riste Škrekovski, 2020. "Wiener Complexity versus the Eccentric Complexity," Mathematics, MDPI, vol. 9(1), pages 1-9, December.
    6. Dobrynin, Andrey A. & Sharafdini, Reza, 2020. "Stepwise transmission irregular graphs," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    7. Bezhaev, Anatoly Yu. & Dobrynin, Andrey A., 2021. "On quartic transmission irregular graphs," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    8. Klavžar, Sandi & Azubha Jemilet, D. & Rajasingh, Indra & Manuel, Paul & Parthiban, N., 2018. "General Transmission Lemma and Wiener complexity of triangular grids," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 115-122.
    9. Dobrynin, Andrey A., 2019. "Infinite family of 2-connected transmission irregular graphs," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 1-4.
    10. Hamid Darabi & Yaser Alizadeh & Sandi Klavžar & Kinkar Chandra Das, 2021. "On the relation between Wiener index and eccentricity of a graph," Journal of Combinatorial Optimization, Springer, vol. 41(4), pages 817-829, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:470:y:2024:i:c:s0096300324000043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.