IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v6y2018i7p124-d158240.html
   My bibliography  Save this article

Decomposition of Dynamical Signals into Jumps, Oscillatory Patterns, and Possible Outliers

Author

Listed:
  • Elena Barton

    (National Physical Laboratory, Teddington, Middlesex TW11 0LW, UK)

  • Basad Al-Sarray

    (Department of Computer Science, College of Science, University of Baghdad, Aljadirya, Baghdad 10071, Iraq)

  • Stéphane Chrétien

    (National Physical Laboratory, Teddington, Middlesex TW11 0LW, UK)

  • Kavya Jagan

    (National Physical Laboratory, Teddington, Middlesex TW11 0LW, UK)

Abstract

In this note, we present a component-wise algorithm combining several recent ideas from signal processing for simultaneous piecewise constants trend, seasonality, outliers, and noise decomposition of dynamical time series. Our approach is entirely based on convex optimisation, and our decomposition is guaranteed to be a global optimiser. We demonstrate the efficiency of the approach via simulations results and real data analysis.

Suggested Citation

  • Elena Barton & Basad Al-Sarray & Stéphane Chrétien & Kavya Jagan, 2018. "Decomposition of Dynamical Signals into Jumps, Oscillatory Patterns, and Possible Outliers," Mathematics, MDPI, vol. 6(7), pages 1-13, July.
  • Handle: RePEc:gam:jmathe:v:6:y:2018:i:7:p:124-:d:158240
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/6/7/124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/6/7/124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harchaoui, Z. & Lévy-Leduc, C., 2010. "Multiple Change-Point Estimation With a Total Variation Penalty," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1480-1493.
    2. Theodore Alexandrov & Silvia Bianconcini & Estela Bee Dagum & Peter Maass & Tucker S. McElroy, 2012. "A Review of Some Modern Approaches to the Problem of Trend Extraction," Econometric Reviews, Taylor & Francis Journals, vol. 31(6), pages 593-624, November.
    3. Robin M. Hogarth & Spyros Makridakis, 1981. "Forecasting and Planning: An Evaluation," Management Science, INFORMS, vol. 27(2), pages 115-138, February.
    4. Marco Bianchi & Martin Boyle & Deirdre Hollingsworth, 1999. "A comparison of methods for trend estimation," Applied Economics Letters, Taylor & Francis Journals, vol. 6(2), pages 103-109.
    5. Franses, Philip Hans, 1996. "Recent Advances in Modelling Seasonality," Journal of Economic Surveys, Wiley Blackwell, vol. 10(3), pages 299-345, September.
    6. Osborn, Denise R & Smith, Jeremy P, 1989. "The Performance of Periodic Autoregressive Models in Forecasting Seasonal U. K. Consumption," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 117-127, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    2. Albertson, Kevin & Aylen, Jonathan, 1999. "Forecasting using a periodic transfer function: with an application to the UK price of ferrous scrap," International Journal of Forecasting, Elsevier, vol. 15(4), pages 409-419, October.
    3. Evans, Mark, 2006. "A study of the relationship between regional ferrous scrap prices in the USA, 1958-2004," Resources Policy, Elsevier, vol. 31(2), pages 65-77, June.
    4. Franses, Ph.H.B.F. & Paap, R., 1999. "Forecasting with periodic autoregressive time series models," Econometric Institute Research Papers EI 9927-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Łukasz Lenart, 2017. "Examination of Seasonal Volatility in HICP for Baltic Region Countries: Non-Parametric Test versus Forecasting Experiment," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 29-67, March.
    6. Gregory A. Baker & Joel K. Leidecker, 2001. "Does it pay to plan?: Strategic planning and financial performance," Agribusiness, John Wiley & Sons, Ltd., vol. 17(3), pages 355-364.
    7. Łukasz Lenart & Błażej Mazur, 2016. "On Bayesian Inference for Almost Periodic in Mean Autoregressive Models," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Magdalena Osińska (ed.), Statistical Review, vol. 63, 2016, 3, edition 1, volume 63, chapter 1, pages 255-272, University of Lodz.
    8. Simon Bussy & Mokhtar Z. Alaya & Anne‐Sophie Jannot & Agathe Guilloux, 2022. "Binacox: automatic cut‐point detection in high‐dimensional Cox model with applications in genetics," Biometrics, The International Biometric Society, vol. 78(4), pages 1414-1426, December.
    9. Dagum, Estela Bee, 2010. "Business Cycles and Current Economic Analysis/Los ciclos económicos y el análisis económico actual," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 577-594, Diciembre.
    10. Yorghos Tripodis & Jeremy Penzer, 2009. "Modelling time series with season-dependent autocorrelation structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 559-574.
    11. Daniel Feiler & Jordan Tong, 2022. "From Noise to Bias: Overconfidence in New Product Forecasting," Management Science, INFORMS, vol. 68(6), pages 4685-4702, June.
    12. Koopman, Siem Jan & Ooms, Marius, 2006. "Forecasting daily time series using periodic unobserved components time series models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 885-903, November.
    13. Wu Wang & Xuming He & Zhongyi Zhu, 2020. "Statistical inference for multiple change‐point models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1149-1170, December.
    14. Ngai Hang Chan & Chun Yip Yau & Rong-Mao Zhang, 2014. "Group LASSO for Structural Break Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 590-599, June.
    15. Ghysels, E., 1993. "A Time Series Model with Periodic Stochastic Regime Switching," Cahiers de recherche 9314, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    16. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016. "The lasso for high dimensional regression with a possible change point," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
    17. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    18. Holger Dette & Kevin Kokot & Stanislav Volgushev, 2020. "Testing relevant hypotheses in functional time series via self‐normalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 629-660, July.
    19. Vasilios Plakandaras & Theophilos Papadimitriou & Periklis Gogas, 2015. "Forecasting Daily and Monthly Exchange Rates with Machine Learning Techniques," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(7), pages 560-573, November.
    20. Stergios B. Fotopoulos & Abhishek Kaul & Vasileios Pavlopoulos & Venkata K. Jandhyala, 2024. "Adaptive parametric change point inference under covariance structure changes," Statistical Papers, Springer, vol. 65(5), pages 2887-2913, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:6:y:2018:i:7:p:124-:d:158240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.