IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v6y2018i4p48-d138192.html
   My bibliography  Save this article

A Numerical Method for Solving a Class of Nonlinear Second Order Fractional Volterra Integro-Differntial Type of Singularly Perturbed Problems

Author

Listed:
  • Muhammed I. Syam

    (Department of Mathematical Sciences, College of Science, UAE University, Al-Ain 15551, UAE)

  • Mohammed Abu Omar

    (Department of Mathematical Sciences, College of Science, UAE University, Al-Ain 15551, UAE)

Abstract

In this paper, we study a class of fractional nonlinear second order Volterra integro-differential type of singularly perturbed problems with fractional order. We divide the problem into two subproblems. The first subproblems is the reduced problem when ϵ = 0 . The second subproblems is fractional Volterra integro-differential problem. We use the finite difference method to solve the first problem and the reproducing kernel method to solve the second problem. In addition, we use the pade’ approximation. The results show that the proposed analytical method can achieve excellent results in predicting the solutions of such problems. Theoretical results are presented. Numerical results are presented to show the efficiency of the proposed method.

Suggested Citation

  • Muhammed I. Syam & Mohammed Abu Omar, 2018. "A Numerical Method for Solving a Class of Nonlinear Second Order Fractional Volterra Integro-Differntial Type of Singularly Perturbed Problems," Mathematics, MDPI, vol. 6(4), pages 1-22, March.
  • Handle: RePEc:gam:jmathe:v:6:y:2018:i:4:p:48-:d:138192
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/6/4/48/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/6/4/48/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kashkari, Bothayna S.H. & Syam, Muhammed I., 2016. "Fractional-order Legendre operational matrix of fractional integration for solving the Riccati equation with fractional order," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 281-291.
    2. Sahu, P.K. & Ray, S.Saha, 2015. "Legendre wavelets operational method for the numerical solutions of nonlinear Volterra integro-differential equations system," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 715-723.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atanacković, Teodor M. & Janev, Marko & Pilipović, Stevan, 2018. "Non-linear boundary value problems involving Caputo derivatives of complex fractional order," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 326-342.
    2. Sahu, P.K. & Saha Ray, S., 2015. "Legendre spectral collocation method for Fredholm integro-differential-difference equation with variable coefficients and mixed conditions," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 575-580.
    3. Hosny, Khalid M. & Darwish, Mohamed M., 2022. "Novel quaternion discrete shifted Gegenbauer moments of fractional-orders for color image analysis," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    4. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    5. Ahmad Sami Bataineh & Osman Rasit Isik & Abedel-Karrem Alomari & Mohammad Shatnawi & Ishak Hashim, 2020. "An Efficient Scheme for Time-Dependent Emden-Fowler Type Equations Based on Two-Dimensional Bernstein Polynomials," Mathematics, MDPI, vol. 8(9), pages 1-17, September.
    6. Navickas, Z. & Telksnys, T. & Marcinkevicius, R. & Ragulskis, M., 2017. "Operator-based approach for the construction of analytical soliton solutions to nonlinear fractional-order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 625-634.
    7. Al-Mdallal, Qasem M. & Abu Omer, Ahmed S., 2018. "Fractional-order Legendre-collocation method for solving fractional initial value problems," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 74-84.
    8. Haifa Bin Jebreen & Ioannis Dassios, 2022. "A Biorthogonal Hermite Cubic Spline Galerkin Method for Solving Fractional Riccati Equation," Mathematics, MDPI, vol. 10(9), pages 1-14, April.
    9. Bota, Constantin & Căruntu, Bogdan, 2017. "Analytical approximate solutions for quadratic Riccati differential equation of fractional order using the Polynomial Least Squares Method," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 339-345.
    10. Singh, Harendra & Srivastava, H.M., 2019. "Jacobi collocation method for the approximate solution of some fractional-order Riccati differential equations with variable coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1130-1149.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:6:y:2018:i:4:p:48-:d:138192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.