IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v6y2018i10p176-d172155.html
   My bibliography  Save this article

A Reliable Method for Solving Fractional Sturm–Liouville Problems

Author

Listed:
  • M. M. Khashshan

    (Department of Mathematics, Teachers College, King Saud University, Riyadh 4545, Saudi Arabia)

  • Muhammed I. Syam

    (Department of Mathematical Sciences, United Arab Emirates University, Al Ain 15551, UAE)

  • Ahlam Al Mokhmari

    (Department of Mathematical Sciences, United Arab Emirates University, Al Ain 15551, UAE)

Abstract

In this paper, a reliable method for solving fractional Sturm–Liouville problem based on the operational matrix method is presented. Some of our numerical examples are presented.

Suggested Citation

  • M. M. Khashshan & Muhammed I. Syam & Ahlam Al Mokhmari, 2018. "A Reliable Method for Solving Fractional Sturm–Liouville Problems," Mathematics, MDPI, vol. 6(10), pages 1-10, September.
  • Handle: RePEc:gam:jmathe:v:6:y:2018:i:10:p:176-:d:172155
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/6/10/176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/6/10/176/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Syam, Muhammed I., 2007. "The modified Broyden-variational method for solving nonlinear elliptic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 392-404.
    2. Attili, Basem S. & Syam, Muhammed I., 2008. "Efficient shooting method for solving two point boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 35(5), pages 895-903.
    3. Syam, Muhammed I. & Siyyam, Hani I., 2009. "An efficient technique for finding the eigenvalues of fourth-order Sturm–Liouville problems," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 659-665.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bothayna S. H. Kashkari & Muhammed I. Syam, 2018. "Reproducing Kernel Method for Solving Nonlinear Fractional Fredholm Integrodifferential Equation," Complexity, Hindawi, vol. 2018, pages 1-7, December.
    2. Muhammed I. Syam & Azza Alsuwaidi & Asia Alneyadi & Safa Al Refai & Sondos Al Khaldi, 2018. "An Implicit Hybrid Method for Solving Fractional Bagley-Torvik Boundary Value Problem," Mathematics, MDPI, vol. 6(7), pages 1-11, June.
    3. Aghazadeh, A. & Mahmoudi, Y. & Saei, F.D., 2023. "Legendre approximation method for computing eigenvalues of fourth order fractional Sturm–Liouville problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 286-301.
    4. Tomar, Saurabh & Dhama, Soniya & Ramos, Higinio & Singh, Mehakpreet, 2023. "An efficient technique based on Green’s function for solving two-point boundary value problems and its convergence analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 408-423.
    5. Muhammad Bilal Hafeez & Wojciech Sumelka & Umar Nazir & Hijaz Ahmad & Sameh Askar, 2021. "Mechanism of Solute and Thermal Characteristics in a Casson Hybrid Nanofluid Based with Ethylene Glycol Influenced by Soret and Dufour Effects," Energies, MDPI, vol. 14(20), pages 1-19, October.
    6. Chein-Shan Liu, 2012. "The Lie-Group Shooting Method for Solving Multi-dimensional Nonlinear Boundary Value Problems," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 468-495, February.
    7. Muhammed I. Syam, 2017. "A Numerical Solution of Fractional Lienard’s Equation by Using the Residual Power Series Method," Mathematics, MDPI, vol. 6(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:6:y:2018:i:10:p:176-:d:172155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.