IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i4p684-d1595050.html
   My bibliography  Save this article

Donsker-Type Theorem for Numerical Schemes of Backward Stochastic Differential Equations

Author

Listed:
  • Yi Guo

    (Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan 250100, China)

  • Naiqi Liu

    (School of Mathematics, Shandong University, Jinan 250100, China)

Abstract

This article studies the theoretical properties of the numerical scheme for backward stochastic differential equations, extending the relevant results of Briand et al. with more general assumptions. To be more precise, the Brown motion will be approximated using the sum of a sequence of martingale differences or a sequence of i.i.d. Gaussian variables instead of the i.i.d. Bernoulli sequence. We cope with an adaptation problem of Y n by defining a new process Y ^ n ; then, we can obtain the Donsker-type theorem for numerical solutions using a similar method to Briand et al.

Suggested Citation

  • Yi Guo & Naiqi Liu, 2025. "Donsker-Type Theorem for Numerical Schemes of Backward Stochastic Differential Equations," Mathematics, MDPI, vol. 13(4), pages 1-16, February.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:684-:d:1595050
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/4/684/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/4/684/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    2. Coquet, François & Mackevicius, Vigirdas & Mémin, Jean, 1998. "Stability in of martingales and backward equations under discretization of filtration," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 235-248, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouchard, Bruno & Touzi, Nizar, 2004. "Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 175-206, June.
    2. Crisan, D. & Manolarakis, K. & Touzi, N., 2010. "On the Monte Carlo simulation of BSDEs: An improvement on the Malliavin weights," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1133-1158, July.
    3. Kraft, Holger & Seifried, Frank Thomas, 2014. "Stochastic differential utility as the continuous-time limit of recursive utility," Journal of Economic Theory, Elsevier, vol. 151(C), pages 528-550.
    4. Bouchard Bruno & Tan Xiaolu & Warin Xavier & Zou Yiyi, 2017. "Numerical approximation of BSDEs using local polynomial drivers and branching processes," Monte Carlo Methods and Applications, De Gruyter, vol. 23(4), pages 241-263, December.
    5. Fan, ShengJun, 2016. "Existence of solutions to one-dimensional BSDEs with semi-linear growth and general growth generators," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 7-15.
    6. Kupper, Michael & Luo, Peng & Tangpi, Ludovic, 2019. "Multidimensional Markovian FBSDEs with super-quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 902-923.
    7. Mingyu Xu, 2007. "Reflected Backward SDEs with Two Barriers Under Monotonicity and General Increasing Conditions," Journal of Theoretical Probability, Springer, vol. 20(4), pages 1005-1039, December.
    8. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    9. Luis Escauriaza & Daniel C. Schwarz & Hao Xing, 2020. "Radner equilibrium and systems of quadratic BSDEs with discontinuous generators," Papers 2008.03500, arXiv.org, revised May 2021.
    10. N'zi, Modeste & Owo, Jean-Marc, 2009. "Backward doubly stochastic differential equations with discontinuous coefficients," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 920-926, April.
    11. Chen, Zengjing & Kulperger, Reg, 2006. "Minimax pricing and Choquet pricing," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 518-528, June.
    12. Auguste Aman, 2012. "Reflected Generalized Backward Doubly SDEs Driven by Lévy Processes and Applications," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1153-1172, December.
    13. Bandini, Elena & Fuhrman, Marco, 2017. "Constrained BSDEs representation of the value function in optimal control of pure jump Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1441-1474.
    14. Jean-François Chassagneux & Romuald Elie & Idris Kharroubi, 2015. "When terminal facelift enforces delta constraints," Finance and Stochastics, Springer, vol. 19(2), pages 329-362, April.
    15. Hyndman, Cody Blaine, 2007. "Forward-backward SDEs and the CIR model," Statistics & Probability Letters, Elsevier, vol. 77(17), pages 1676-1682, November.
    16. Leitner Johannes, 2007. "Pricing and hedging with globally and instantaneously vanishing risk," Statistics & Risk Modeling, De Gruyter, vol. 25(4), pages 311-332, October.
    17. Cao, Guilan & He, Kai, 2007. "Successive approximation of infinite dimensional semilinear backward stochastic evolution equations with jumps," Stochastic Processes and their Applications, Elsevier, vol. 117(9), pages 1251-1264, September.
    18. Reda Chhaibi & Ibrahim Ekren & Eunjung Noh & Lu Vy, 2022. "A unified approach to informed trading via Monge-Kantorovich duality," Papers 2210.17384, arXiv.org.
    19. Andrew Lesniewski & Anja Richter, 2016. "Managing counterparty credit risk via BSDEs," Papers 1608.03237, arXiv.org, revised Aug 2016.
    20. Fan, Xiliang & Ren, Yong & Zhu, Dongjin, 2010. "A note on the doubly reflected backward stochastic differential equations driven by a Lévy process," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 690-696, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:684-:d:1595050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.