IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i4p669-d1594032.html
   My bibliography  Save this article

Distributed Estimation for ℓ 0 -Constrained Quantile Regression Using Iterative Hard Thresholding

Author

Listed:
  • Zhihe Zhao

    (Department of Mathematics, City University of Hong Kong, Hong Kong, China)

  • Heng Lian

    (Department of Mathematics, City University of Hong Kong, Hong Kong, China)

Abstract

Distributed frameworks for statistical estimation and inference have become a critical toolkit for analyzing massive data efficiently. In this paper, we present distributed estimation for high-dimensional quantile regression with ℓ 0 constraint using iterative hard thresholding (IHT). We propose a communication-efficient distributed estimator which is linearly convergent to the true parameter up to the statistical precision of the model, despite the fact that the check loss minimization problem with an ℓ 0 constraint is neither strongly smooth nor convex. The distributed estimator we develop can achieve the same convergence rate as the estimator based on the whole data set under suitable assumptions. In our simulations, we illustrate the convergence of the estimators under different settings and also demonstrate the accuracy of nonzero parameter identification.

Suggested Citation

  • Zhihe Zhao & Heng Lian, 2025. "Distributed Estimation for ℓ 0 -Constrained Quantile Regression Using Iterative Hard Thresholding," Mathematics, MDPI, vol. 13(4), pages 1-16, February.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:669-:d:1594032
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/4/669/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/4/669/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huixia Judy Wang & Deyuan Li, 2013. "Estimation of Extreme Conditional Quantiles Through Power Transformation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1062-1074, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    2. Hou, Yanxi & Leng, Xuan & Peng, Liang & Zhou, Yinggang, 2024. "Panel quantile regression for extreme risk," Journal of Econometrics, Elsevier, vol. 240(1).
    3. Yingying Hu & Huixia Judy Wang & Xuming He & Jianhua Guo, 2021. "Bayesian joint-quantile regression," Computational Statistics, Springer, vol. 36(3), pages 2033-2053, September.
    4. Feiyu Jiang & Zifeng Zhao & Xiaofeng Shao, 2022. "Jiang, Zhao and Shao's reply to the Discussion of ‘The First Discussion Meeting on Statistical Aspects of the Covid‐19 Pandemic’," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1849-1854, October.
    5. Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Reprint: Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 239(2).
    6. Takuma Yoshida, 2021. "Additive models for extremal quantile regression with Pareto-type distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 103-134, March.
    7. Hao, Meiling & Lin, Yuanyuan & Shen, Guohao & Su, Wen, 2023. "Nonparametric inference on smoothed quantile regression process," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    8. Yuya Sasaki & Yulong Wang, 2022. "Fixed-k Inference for Conditional Extremal Quantiles," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 829-837, April.
    9. Stéphane Girard & Gilles Claude Stupfler & Antoine Usseglio-Carleve, 2021. "Extreme Conditional Expectile Estimation in Heavy-Tailed Heteroscedastic Regression Models," Post-Print hal-03306230, HAL.
    10. Yaolan Ma & Bo Wei & Wei Huang, 2020. "A nonparametric estimator for the conditional tail index of Pareto-type distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 17-44, January.
    11. Ma, Yaolan & Jiang, Yuexiang & Huang, Wei, 2018. "Empirical likelihood based inference for conditional Pareto-type tail index," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 114-121.
    12. Firpo, Sergio & Galvao, Antonio F. & Pinto, Cristine & Poirier, Alexandre & Sanroman, Graciela, 2022. "GMM quantile regression," Journal of Econometrics, Elsevier, vol. 230(2), pages 432-452.
    13. Norman Maswanganyi & Caston Sigauke & Edmore Ranganai, 2021. "Prediction of Extreme Conditional Quantiles of Electricity Demand: An Application Using South African Data," Energies, MDPI, vol. 14(20), pages 1-21, October.
    14. He, Fengyang & Wang, Huixia Judy & Zhou, Yuejin, 2022. "Extremal quantile autoregression for heavy-tailed time series," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    15. Silvia Sarpietro & Yuya Sasaki & Yulong Wang, 2022. "Non-Existent Moments of Earnings Growth," Papers 2203.08014, arXiv.org, revised Feb 2024.
    16. Sottile, Gianluca & Frumento, Paolo, 2022. "Robust estimation and regression with parametric quantile functions," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    17. Mei Ling Huang & Christine Nguyen, 2018. "A nonparametric approach for quantile regression," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-14, December.
    18. Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 238(1).
    19. Karlsson, Martin & Wang, Yulong & Ziebarth, Nicolas R., 2024. "Getting the right tail right: Modeling tails of health expenditure distributions," Journal of Health Economics, Elsevier, vol. 97(C).
    20. Ji Hyung Lee & Yuya Sasaki & Alexis Akira Toda & Yulong Wang, 2021. "Fixed-k Tail Regression: New Evidence on Tax and Wealth Inequality from Forbes 400," Papers 2105.10007, arXiv.org, revised Sep 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:669-:d:1594032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.